Seung-Gi Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9652452/publications.pdf

Version: 2024-02-01

		304743	477307	
30	4,633	22	29	
papers	citations	h-index	g-index	
30	30	30	6067	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Concordance of hydrogen peroxide–induced 8-oxo-guanine patterns with two cancer mutation signatures of upper GI tract tumors. Science Advances, 2022, 8, .	10.3	10
2	Z-DNA is remodelled by ZBTB43 in prospermatogonia to safeguard the germline genome and epigenome. Nature Cell Biology, 2022, 24, 1141-1153.	10.3	8
3	Purification of TET Proteins. Methods in Molecular Biology, 2021, 2272, 225-237.	0.9	2
4	The major mechanism of melanoma mutations is based on deamination of cytosine in pyrimidine dimers as determined by circle damage sequencing. Science Advances, 2021, 7, .	10.3	23
5	Reprogramming of DNA methylation at NEUROD2-bound sequences during cortical neuron differentiation. Science Advances, 2019, 5, eaax0080.	10.3	32
6	Defective 5-Methylcytosine Oxidation in Tumorigenesis. , 2018, , .		1
7	An Intrinsic Epigenetic Barrier for Functional Axon Regeneration. Neuron, 2017, 94, 337-346.e6.	8.1	130
8	Tet3 Reads 5-Carboxylcytosine through Its CXXC Domain and Is a Potential Guardian against Neurodegeneration. Cell Reports, 2016, 14, 493-505.	6.4	109
9	Longitudinal epigenetic and gene expression profiles analyzed by three-component analysis reveal down-regulation of genes involved in protein translation in human aging. Nucleic Acids Research, 2015, 43, e100-e100.	14.5	35
10	The DNA methylation landscape of human melanoma. Genomics, 2015, 106, 322-330.	2.9	50
11	MIRA-seq for DNA methylation analysis of CpG islands. Epigenomics, 2015, 7, 695-706.	2.1	37
12	Tet-Mediated Formation of 5-Hydroxymethylcytosine in RNA. Journal of the American Chemical Society, 2014, 136, 11582-11585.	13.7	282
13	The role of 5-hydroxymethylcytosine in human cancer. Cell and Tissue Research, 2014, 356, 631-641.	2.9	87
14	Formation of cyclobutane pyrimidine dimers at dipyrimidines containing 5-hydroxymethylcytosine. Photochemical and Photobiological Sciences, 2013, 12, 1409-1415.	2.9	24
15	Dynamics of 5-Hydroxymethylcytosine and Chromatin Marks in Mammalian Neurogenesis. Cell Reports, 2013, 3, 291-300.	6.4	385
16	5-hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics and Chromatin, 2013, 6, 10.	3.9	157
17	The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 2011, 477, 606-610.	27.8	969
18	Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3642-3647.	7.1	618

#	Article	IF	CITATIONS
19	5-Hydroxymethylcytosine Is Strongly Depleted in Human Cancers but Its Levels Do Not Correlate with <i>IDH1</i> Mutations. Cancer Research, 2011, 71, 7360-7365.	0.9	400
20	Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Research, 2011, 39, 5015-5024.	14.5	344
21	Sex-Specific Dynamics of Global Chromatin Changes in Fetal Mouse Germ Cells. PLoS ONE, 2011, 6, e23848.	2.5	35
22	Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Research, 2010, 38, e125-e125.	14.5	389
23	Haploid male germ cell―and oocyteâ€specific <i>Mbd3l1</i> and <i>Mbd3l2</i> genes are dispensable for early development, fertility, and zygotic DNA demethylation in the mouse. Developmental Dynamics, 2008, 237, 3435-3443.	1.8	8
24	GADD45A Does Not Promote DNA Demethylation. PLoS Genetics, 2008, 4, e1000013.	3. 5	140
25	Synthetic neomycin-kanamycin phosphotransferase, type II coding sequence for gene targeting in mammalian cells. Genesis, 2005, 42, 207-209.	1.6	4
26	Repair of Methylation Damage in DNA and RNA by Mammalian AlkB Homologues. Journal of Biological Chemistry, 2005, 280, 39448-39459.	3.4	131
27	MBD3L2 Interacts with MBD3 and Components of the NuRD Complex and Can Oppose MBD2-MeCP1-mediated Methylation Silencing. Journal of Biological Chemistry, 2005, 280, 12700-12709.	3.4	35
28	MBD3L1 Is a Transcriptional Repressor That Interacts with Methyl-CpG-binding Protein 2 (MBD2) and Components of the NuRD Complex. Journal of Biological Chemistry, 2004, 279, 52456-52464.	3.4	48
29	MBD3L1 and MBD3L2, Two New Proteins Homologous to the Methyl-CpG-Binding Proteins MBD2 and MBD3: Characterization of MBD3L1 as a Testis-Specific Transcriptional Repressor. Genomics, 2002, 80, 621-629.	2.9	36
30	RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene, 2002, 21, 2713-2720.	5.9	104