Vanessa Ribes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/965129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Divergent transcriptional and transforming properties of PAX3-FOXO1 and PAX7-FOXO1 paralogs. PLoS Genetics, 2022, 18, e1009782.	1.5	4
2	Dynamic extrinsic pacing of the HOX clock in human axial progenitors controls motor neuron subtype specification. Development (Cambridge), 2021, 148, .	1.2	37
3	The PAX-FOXO1s trigger fast trans-differentiation of chick embryonic neural cells into alveolar rhabdomyosarcoma with tissue invasive properties limited by S phase entry inhibition. PLoS Genetics, 2020, 16, e1009164.	1.5	8
4	Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation. ELife, 2020, 9, .	2.8	15
5	Title is missing!. , 2020, 16, e1009164.		0
6	Title is missing!. , 2020, 16, e1009164.		0
7	Title is missing!. , 2020, 16, e1009164.		0
8	Title is missing!. , 2020, 16, e1009164.		0
9	Title is missing!. , 2020, 16, e1009164.		0
10	Title is missing!. , 2020, 16, e1009164.		0
11	BMP4 patterns Smad activity and generates stereotyped cell fate organisation in spinal organoids. Development (Cambridge), 2019, 146, .	1.2	55
12	In vivo generation of haematopoietic stem/progenitor cells from bone marrow-derived haemogenic endothelium. Nature Cell Biology, 2019, 21, 1334-1345.	4.6	34
13	The HMG box transcription factors Sox1a and b specify a new class of glycinergic interneurons in the spinal cord of zebrafish embryos. Development (Cambridge), 2019, 146, .	1.2	20
14	Pax3- and Pax7-mediated Dbx1 regulation orchestrates the patterning of intermediate spinal interneurons. Developmental Biology, 2017, 432, 24-33.	0.9	14
15	Structures and properties of PAX linked regulatory networks architecting and pacing the emergence of neuronal diversity. Seminars in Cell and Developmental Biology, 2015, 44, 75-86.	2.3	7
16	Valproic Acid silencing of <i>ascl1b/ascl1</i> results in the failure of serotonergic differentiation in a zebrafish model of Fetal Valproate Syndrome. DMM Disease Models and Mechanisms, 2014, 7, 107-17.	1.2	37
17	Msx1 and Msx2 act as essential activators of <i>Atoh1</i> expression in the murine spinal cord. Development (Cambridge), 2014, 141, 1726-1736.	1.2	33
18	A chemical-genetics approach to study the molecular pathology of central serotonin abnormalities in fetal valproate syndrome. Lancet, The, 2013, 381, S55.	6.3	0

VANESSA RIBES

#	Article	IF	CITATIONS
19	Distinct Regulatory Mechanisms Act to Establish and Maintain Pax3 Expression in the Developing Neural Tube. PLoS Genetics, 2013, 9, e1003811.	1.5	27
20	The transition from differentiation to growth during dermomyotome-derived myogenesis depends on temporally restricted hedgehog signaling. Development (Cambridge), 2013, 140, 1740-1750.	1.2	29
21	Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient in the Vertebrate Neural Tube. Cell, 2012, 148, 273-284.	13.5	417
22	Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling. Development (Cambridge), 2010, 137, 4271-4282.	1.2	86
23	Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. Genes and Development, 2010, 24, 1186-1200.	2.7	180
24	Dynamic Assignment and Maintenance of Positional Identity in the Ventral Neural Tube by the Morphogen Sonic Hedgehog. PLoS Biology, 2010, 8, e1000382.	2.6	184
25	Early mouse caudal development relies on crosstalk between retinoic acid,Shh and Fgf signalling pathways. Development (Cambridge), 2009, 136, 665-676.	1.2	98
26	Establishing and Interpreting Graded Sonic Hedgehog Signaling during Vertebrate Neural Tube Patterning: The Role of Negative Feedback. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002014-a002014.	2.3	194
27	13-P065 How long does ventral neural tube patterning need Sonic Hedgehog signaling?. Mechanisms of Development, 2009, 126, S214.	1.7	0
28	Combinatorial signalling controls Neurogenin2 expression at the onset of spinal neurogenesis. Developmental Biology, 2008, 321, 470-481.	0.9	43
29	Rescue of cytochrome P450 oxidoreductase (Por) mouse mutants reveals functions in vasculogenesis, brain and limb patterning linked to retinoic acid homeostasis. Developmental Biology, 2007, 303, 66-81.	0.9	61
30	Retinoids control anterior and dorsal properties in the developing forebrain. Developmental Biology, 2007, 303, 362-375.	0.9	97
31	The oxidizing enzyme CYP26a1 tightly regulates the availability of retinoic acid in the gastrulating mouse embryo to ensure proper head development and vasculogenesis. Developmental Dynamics, 2007, 236, 644-653.	0.8	48
32	Retinoic acid signalling is required for specification of pronephric cell fate. Developmental Biology, 2006, 299, 35-51.	0.9	80
33	Retinaldehyde dehydrogenase 2 (RALDH2)-mediated retinoic acid synthesis regulates early mouse embryonic forebrain development by controlling FGF and sonic hedgehog signaling. Development (Cambridge), 2006, 133, 351-361.	1.2	114
34	Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Developmental Biology, 2005, 284, 399-411.	0.9	226
35	Characterization of 79 microsatellite DNA markers in the Pacific oyster Crassostrea gigas. Molecular Ecology Notes, 2003, 3, 228-232.	1.7	160