
Carmelo Nucera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9648368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463, 899-905.	27.8	3,331
2	B-Raf ^{V600E} and thrombospondin-1 promote thyroid cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10649-10654.	7.1	164
3	Targeting BRAFV600E with PLX4720 Displays Potent Antimigratory and Anti-invasive Activity in Preclinical Models of Human Thyroid Cancer. Oncologist, 2011, 16, 296-309.	3.7	86
4	SCFÎ ² -TRCP suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. Journal of Experimental Medicine, 2012, 209, 1289-1307.	8.5	85
5	BRAFV600E and Microenvironment in Thyroid Cancer: A Functional Link to Drive Cancer Progression. Cancer Research, 2011, 71, 2417-2422.	0.9	81
6	<i>FOXA1</i> Is a Potential Oncogene in Anaplastic Thyroid Carcinoma. Clinical Cancer Research, 2009, 15, 3680-3689.	7.0	75
7	A Novel Orthotopic Mouse Model of Human Anaplastic Thyroid Carcinoma. Thyroid, 2009, 19, 1077-1084.	4.5	73
8	Personalized Therapy in Patients With Anaplastic Thyroid Cancer: Targeting Genetic and Epigenetic Alterations. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 35-42.	3.6	60
9	Late Intervention with anti-BRAFV600E Therapy Induces Tumor Regression in an Orthotopic Mouse Model of Human Anaplastic Thyroid Cancer. Endocrinology, 2012, 153, 985-994.	2.8	57
10	Pericytes Elicit Resistance to Vemurafenib and Sorafenib Therapy in Thyroid Carcinoma via the TSP-1/TGFβ1 Axis. Clinical Cancer Research, 2018, 24, 6078-6097.	7.0	43
11	Vemurafenib-resistance via de novo RBM genes mutations and chromosome 5 aberrations is overcome by combined therapy with palbociclib in thyroid carcinoma with BRAFV600E. Oncotarget, 2017, 8, 84743-84760.	1.8	40
12	Metastasis-associated <i>MCL1</i> and <i>P16</i> copy number alterations dictate resistance to vemurafenib in a <i>BRAFV600E</i> patient-derived papillary thyroid carcinoma preclinical model. Oncotarget, 2015, 6, 42445-42467.	1.8	40
13	Role of B-RafV600E in differentiated thyroid cancer and preclinical validation of compounds against B-RafV600E. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1795, 152-161.	7.4	39
14	FOXM1 is a molecular determinant of the mitogenic and invasive phenotype of anaplastic thyroid carcinoma. Endocrine-Related Cancer, 2012, 19, 695-710.	3.1	36
15	Thyroidectomy with neoadjuvant PLX4720 extends survival and decreases tumor burden in an orthotopic mouse model of anaplastic thyroid cancer. Surgery, 2010, 148, 1154-1162.	1.9	31
16	Role of BRAFV600E in the First Preclinical Model of Multifocal Infiltrating Myopericytoma Development and Microenvironment. Journal of the National Cancer Institute, 2014, 106, .	6.3	31
17	The BRAFV600E mutation: what is it really orchestrating in thyroid cancer?. Oncotarget, 2010, 1, 751-6.	1.8	24
18	Thrombospondin-1 Silencing Down-Regulates Integrin Expression Levels in Human Anaplastic Thyroid Cancer Cells with BRAFV600E: New Insights in the Host Tissue Adaptation and Homeostasis of Tumor Microenvironment. Frontiers in Endocrinology, 2013, 4, 189.	3.5	22

CARMELO NUCERA

#	Article	IF	CITATIONS
19	Coding Molecular Determinants of Thyroid Cancer Development and Progression. Endocrinology and Metabolism Clinics of North America, 2019, 48, 37-59.	3.2	21
20	Maternal thyroid hormones are transcriptionally active during embryo–foetal development: results from a novel transgenic mouse model. Journal of Cellular and Molecular Medicine, 2010, 14, 2417-2435.	3.6	20
21	Clinical Outcome, Role of BRAFV600E, and Molecular Pathways in Papillary Thyroid Microcarcinoma: Is It an Indolent Cancer or an Early Stage of Papillary Thyroid Cancer?. Frontiers in Endocrinology, 2012, 3, 33.	3.5	15
22	Fine-Tuning Lipid Metabolism by Targeting Mitochondria-Associated Acetyl-CoA-Carboxylase 2 in <i>BRAF^{V600E}</i> Papillary Thyroid Carcinoma. Thyroid, 2021, 31, 1335-1358.	4.5	14
23	Targeting Thyroid Cancer Microenvironment: Basic Research and Clinical Applications. Frontiers in Endocrinology, 2013, 4, 167.	3.5	11
24	Expression of angiogenic switch, cachexia and inflammation factors at the crossroad in undifferentiated thyroid carcinoma with BRAF. Cancer Letters, 2016, 380, 577-585.	7.2	11
25	Tumor Microenvironment–Associated Pericyte Populations May Impact Therapeutic Response in Thyroid Cancer. Advances in Experimental Medicine and Biology, 2021, 1329, 253-269.	1.6	11
26	Effect of the micronutrient iodine in thyroid carcinoma angiogenesis. Aging, 2016, 8, 3180-3184.	3.1	8
27	Lenvatinib Targets PDGFR-β Pericytes and Inhibits Synergy With Thyroid Carcinoma Cells: Novel Translational Insights. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3569-3590.	3.6	6
28	Evolution of resistance to thyroid cancer therapy. Aging, 2016, 8, 1576-1577.	3.1	6
29	Identification of insertions in PTEN and TP53 in anaplastic thyroid carcinoma with angiogenic brain metastasis. Endocrine-Related Cancer, 2015, 22, L23-L28.	3.1	5
30	Clonal Reconstruction of Thyroid Cancer: An Essential Strategy for Preventing Resistance to Ultra-Precision Therapy. Frontiers in Endocrinology, 2019, 10, 468.	3.5	5
31	Role of Regulatory Non-Coding RNAs in Aggressive Thyroid Cancer: Prospective Applications of Neural Network Analysis. Molecules, 2021, 26, 3022.	3.8	5
32	Genomic and immunohistochemical analysis in human adrenal cortical neoplasia reveal beta-catenin mutations as potential prognostic biomarker. Discoveries, 2015, 3, e40.	2.3	5
33	A novel combined targeted therapy with bromodomain antagonist and MEK inhibitor in anaplastic thyroid cancer. Oncotarget, 2019, 10, 686-687.	1.8	4
34	Invasive follicular variant of papillary thyroid cancer harboring the NRAS mutation Q61K and presenting with bone metastasis—A case report. International Journal of Surgery Case Reports, 2017, 38, 180-184.	0.6	3