
José Carlos DÃ;vila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/964832/publications.pdf Version: 2024-02-01

LOSÃO CARLOS DÃ:VILA

#	Article	IF	CITATIONS
1	Animal and Cellular Models of Alzheimer's Disease: Progress, Promise, and Future Approaches. Neuroscientist, 2022, 28, 572-593.	2.6	11
2	Insulin regulates neurovascular coupling through astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	16
3	Amyloidâ€Î² impairs the phagocytosis of dystrophic synapses by astrocytes in Alzheimer's disease. Glia, 2021, 69, 997-1011.	2.5	48
4	Hypoxia compromises the mitochondrial metabolism of Alzheimer's disease microglia via HIF1. Nature Aging, 2021, 1, 385-399.	5.3	43
5	Plaque-Associated Oligomeric Amyloid-Beta Drives Early Synaptotoxicity in APP/PS1 Mice Hippocampus: Ultrastructural Pathology Analysis. Frontiers in Neuroscience, 2021, 15, 752594.	1.4	15
6	Distinct diseaseâ€sensitive GABAergic neurons in the perirhinal cortex of Alzheimer's mice and patients. Brain Pathology, 2020, 30, 345-363.	2.1	49
7	Generation of oligodendrocytes and establishment of an all-human myelinating platform from human pluripotent stem cells. Nature Protocols, 2020, 15, 3716-3744.	5.5	27
8	Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 6867.	1.8	26
9	Enhancing microtubule stabilization rescues cognitive deficits and ameliorates pathological phenotype in an amyloidogenic Alzheimer's disease model. Scientific Reports, 2020, 10, 14776.	1.6	37
10	Amyloid-beta impairs TOM1-mediated IL-1R1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21198-21206.	3.3	24
11	Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer's disease. Acta Neuropathologica, 2019, 138, 251-273.	3.9	187
12	SOX10 Single Transcription Factor-Based Fast and Efficient Generation ofÂOligodendrocytes from Human Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 655-672.	2.3	81
13	Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer's disease. Glia, 2018, 66, 637-653.	2.5	159
14	Microglia in Alzheimer's Disease: Activated, Dysfunctional or Degenerative. Frontiers in Aging Neuroscience, 2018, 10, 140.	1.7	160
15	Impaired <scp>AMPA</scp> signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell, 2018, 17, e12791.	3.0	58
16	Dual roles of Aβ in proliferative processes in an amyloidogenic model of Alzheimer's disease. Scientific Reports, 2017, 7, 10085.	1.6	34
17	N370S <i>â€GBA1</i> mutation causes lysosomal cholesterol accumulation in Parkinson's disease. Movement Disorders, 2017, 32, 1409-1422.	2.2	86
18	Soluble phospho-tau from Alzheimer's disease hippocampus drives microglial degeneration. Acta Neuropathologica, 2016, 132, 897-916.	3.9	124

JOSé CARLOS DÃiVILA

#	Article	IF	CITATIONS
19	Expression of Gls and Gls2 glutaminase isoforms in astrocytes. Glia, 2015, 63, 365-382.	2.5	45
20	P1-103: LITHIUM AMELIORATES THE NEURONAL PATHOLOGY IN A PS1/APP ALZHEIMER'S MODEL BY CHANGING PLAQUE TOXICITY. , 2014, 10, P339-P339.		0
21	The Podosphaera xanthii haustorium, the fungal Trojan horse of cucurbit-powdery mildew interactions. Fungal Genetics and Biology, 2014, 71, 21-31.	0.9	23
22	Early Neuronal Loss and Axonal/Presynaptic Damage is Associated with Accelerated Amyloid-β Accumulation in AβPP/PS1 Alzheimer's Disease Mice Subiculum. Journal of Alzheimer's Disease, 2014, 42, 521-541.	1.2	48
23	P1-092: MICROGLIAL IMPAIRMENT IN THE HUMAN ALZHEIMER'S DISEASE DENTATE GYRUS. , 2014, 10, P335-P33	6.	0
24	P3-047: SYNAPTIC/NEURITIC PATHOLOGY IN PS1/APP ALZHEIMER'S MICE HIPPOCAMPUS INVOLVES AUTOPHAGIC FAILURE AND PRESYNAPTIC ABETA ACCUMULATION. , 2014, 10, P645-P645.		0
25	Disruption of Amyloid Plaques Integrity Affects the Soluble Oligomers Content from Alzheimer Disease Brains. PLoS ONE, 2014, 9, e114041.	1.1	20
26	In vivo modification of Abeta plaque toxicity as a novel neuroprotective lithium-mediated therapy for Alzheimer's disease pathology. Acta Neuropathologica Communications, 2013, 1, 73.	2.4	33
27	Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic Abeta in transgenic APP/PS1 hippocampus. Molecular Neurodegeneration, 2012, 7, 59.	4.4	85
28	Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus. Acta Neuropathologica, 2012, 123, 53-70.	3.9	179
29	Polyamines Are Present in Mast Cell Secretory Granules and Are Important for Granule Homeostasis. PLoS ONE, 2010, 5, e15071.	1.1	49
30	Expression of somatostatin and neuropeptide Y in the embryonic, postnatal, and adult mouse amygdalar complex. Journal of Comparative Neurology, 2009, 513, 335-348.	0.9	37
31	2074v Alpha1-Beta1 and Alpha6-Beta1-Integrin. , 2008, , 1-1.		0
32	Efferent retinal projections visualized by immunohistochemical detection of the estrogen-related receptor beta in the postnatal and adult mouse brain. Neuroscience Letters, 2008, 438, 48-53.	1.0	15
33	Dynamic patterns of colocalization of calbindin, parvalbumin and GABA in subpopulations of mouse basolateral amygdalar cells during development. Journal of Chemical Neuroanatomy, 2008, 35, 67-76.	1.0	30
34	Development and adult organization of the lateral part of the bed nucleus of the stria terminalis in the chicken. Brain Research Bulletin, 2008, 75, 410-413.	1.4	7
35	Distinct immunohistochemically defined areas in the medial amygdala in the developing and adult mouse. Brain Research Bulletin, 2008, 75, 214-217.	1.4	19
36	Effect of lipopeptides of antagonistic strains ofBacillus subtilison the morphology and ultrastructure of the cucurbit fungal pathogenPodosphaera fusca. Journal of Applied Microbiology, 2007, 103, 969-976.	1.4	110

JOSé CARLOS DáVILA

#	Article	IF	CITATIONS
37	Immunohistochemical localization of the vesicular glutamate transporter VGLUT2 in the developing and adult mouse claustrum. Journal of Chemical Neuroanatomy, 2006, 31, 169-177.	1.0	24
38	Calcium-binding proteins, neuronal nitric oxide synthase, and GABA help to distinguish different pallial areas in the developing and adult chicken. I. Hippocampal formation and hyperpallium. Journal of Comparative Neurology, 2006, 497, 751-771.	0.9	51
39	Embryonic and postnatal development of GABA, calbindin, calretinin, and parvalbumin in the mouse claustral complex. Journal of Comparative Neurology, 2005, 481, 42-57.	0.9	41
40	Development of neurons and fibers containing calcium binding proteins in the pallial amygdala of mouse, with special emphasis on those of the basolateral amygdalar complex. Journal of Comparative Neurology, 2005, 488, 492-513.	0.9	42
41	Semaphorin5A expression in the developing chick telencephalon. Brain Research Bulletin, 2005, 66, 436-440.	1.4	6
42	Distribution of GABA, calbindin and nitric oxide synthase in the developing chick entopallium. Brain Research Bulletin, 2005, 66, 441-444.	1.4	13
43	The ascending tectofugal visual system in amniotes: New insights. Brain Research Bulletin, 2005, 66, 290-296.	1.4	30
44	Distribution of nitric oxide-producing neurons in the developing and adult mouse amygdalar basolateral complex. Brain Research Bulletin, 2005, 66, 465-469.	1.4	20
45	Distinct types of nitric oxide-producing neurons in the developing and adult mouse claustrum. Journal of Comparative Neurology, 2003, 465, 431-444.	0.9	33
46	Expression of calcium-binding proteins in the mouse claustrum. Journal of Chemical Neuroanatomy, 2003, 25, 151-160.	1.0	60
47	Thalamo-telencephalic connections: new insights on the cortical organization in reptiles. Brain Research Bulletin, 2002, 57, 451-454.	1.4	59
48	A putative striato-dorsal thalamic pathway in lizards. Brain Research Bulletin, 2002, 57, 533-535.	1.4	12
49	A proposed homology between the reptilian dorsomedial thalamic nucleus and the mammalian paraventricular thalamic nucleus. Brain Research Bulletin, 2002, 57, 443-445.	1.4	14
50	Mesencephalic and diencephalic afferent connections to the thalamic nucleus rotundus in the lizard,Psammodromus algirus. European Journal of Neuroscience, 2002, 16, 267-282.	1.2	27
51	Light and electron microscopic evidence for projections from the thalamic nucleus rotundus to targets in the basal ganglia, the dorsal ventricular ridge, and the amygdaloid complex in a lizard. Journal of Comparative Neurology, 2000, 424, 216-232.	0.9	71
52	Expression of calcium-binding proteins in the diencephalon of the lizardPsammodromus algirus. Journal of Comparative Neurology, 2000, 427, 67-92.	0.9	105
53	Nucleus accumbens in the lizardPsammodromus algirus: chemoarchitecture and cortical afferent connections. , 1999, 405, 15-31.		27
54	Calcium-binding proteins in the dorsal ventricular ridge of the lizardPsammodromus algirus. , 1999, 405, 32-44.		14

4

José Carlos DÃivila

#	Article	IF	CITATIONS
55	Calbindin-D28k in cortical regions of the lizardPsammodromus algirus. , 1999, 405, 61-74.		18
56	GABAergic Cell Types in the Lizard Hippocampus. European Journal of Morphology, 1999, 37, 89-94.	1.4	7
57	Cholecystokinin Innervation of the Cerebral Cortex in a Reptile, the Lizard <i>Psammodromus algirus</i> . Brain, Behavior and Evolution, 1998, 51, 100-112.	0.9	8
58	Calretinin immunoreactivity in the cerebral cortex of the lizardPsammodromus algirus: A light and electron microscopic study. Journal of Comparative Neurology, 1997, 382, 382-393.	0.9	21
59	Multivariate statistical analysis of golgi stained neurons. Neuroscience Research, 1996, 24, 215-226.	1.0	2
60	Intrinsic connections in the anterior dorsal ventricular ridge of the lizard psammodromus algirus. , 1996, 372, 49-58.		20
61	NADPH diaphorase-positive neurons in the lizard hippocampus: A distinct subpopulation of GABAergic interneurons. Hippocampus, 1995, 5, 60-70.	0.9	35
62	Monoaminergic Innervation Patterns in the Anterior Dorsal Ventricular Ridge of a Lacertid Lizard, <i>Psammodromus algirus</i> . Brain, Behavior and Evolution, 1994, 44, 175-186.	0.9	12
63	Immunocytochemical localization of the GABAAreceptor in the cerebral cortex of the lizardPsammodromus algirus. Journal of Comparative Neurology, 1994, 344, 610-618.	0.9	7
64	Serotonin innervation of the cerebral cortex in lizards. Brain Research, 1989, 488, 213-220.	1.1	11
65	Immunocytochemical localization of somatostatin in the cerebral cortex of lizards. Brain Research, 1988, 447, 52-59.	1.1	19
66	A golgi study of the dorsal cortex in the lizardPsammodromus algirus. Journal of Morphology, 1987, 194, 265-274.	0.6	13