
Nagaraja Bhari Mallanna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9647235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent progress in the drug development of coumarin derivatives asÂpotent antituberculosis agents. European Journal of Medicinal Chemistry, 2015, 100, 257-269.	5.5	193
2	Recent Progress on Pyrazole Scaffoldâ€Based Antimycobacterial Agents. Archiv Der Pharmazie, 2015, 348, 299-314.	4.1	73
3	Highly efficient hydrogen production by hydrolysis of NaBH4 using eminently competent recyclable Fe2O3 decorated oxidized MWCNTs robust catalyst. Applied Surface Science, 2019, 489, 538-551.	6.1	65
4	Production of hydrogen through the coupling of dehydrogenation and hydrogenation for the synthesis of cyclohexanone and furfuryl alcohol over different promoters supported on Cu–MgO catalysts. International Journal of Hydrogen Energy, 2011, 36, 3417-3425.	7.1	60
5	The effect of potassium on the activity and stability of Ni–MgO–ZrO2 catalysts for the dry reforming of methane to give synthesis gas. Catalysis Today, 2011, 178, 132-136.	4.4	59
6	Dehydrogenation of alkane to light olefin over PtSn/Î,-Al2O3 catalyst: Effects of Sn loading. Catalysis Today, 2014, 232, 53-62.	4.4	59
7	Selective and stable bimetallic PtSn/Î,-Al2O3 catalyst for dehydrogenation of n-butane to n-butenes. Applied Catalysis A: General, 2013, 467, 211-223.	4.3	48
8	Activity studies of vanadium, iron, carbon and mixed oxides based catalysts for the oxidative dehydrogenation of ethylbenzene to styrene: a review. Catalysis Science and Technology, 2015, 5, 5062-5076.	4.1	43
9	Paving way for sustainable earth-abundant metal based catalysts for chemical fixation of CO ₂ into epoxides for cyclic carbonate formation. Catalysis Reviews - Science and Engineering, 2022, 64, 356-443.	12.9	43
10	Preparation of mesostructured barium sulfate with high surface area by dispersion method and its characterization. Journal of Colloid and Interface Science, 2007, 316, 645-651.	9.4	38
11	Catalytic Decomposition of SO ₃ over Pt/BaSO ₄ Materials in Sulfurâ``lodine Cycle for Hydrogen Production. Industrial & Engineering Chemistry Research, 2009, 48, 1451-1457.	3.7	37
12	Development of stable MoO 3 /TiO 2 -Al 2 O 3 catalyst for oxidative dehydrogenation of ethylbenzene to styrene using CO 2 as soft oxidant. Journal of CO2 Utilization, 2017, 18, 309-317.	6.8	37
13	Sustainable Hydrogen Generation by Catalytic Hydrolysis of NaBH4 Using Tailored Nanostructured Urchin-like CuCo2O4 Spinel Catalyst. Catalysis Letters, 2020, 150, 586-604.	2.6	33
14	Effect of potassium addition on bimetallic PtSn supported Î,-Al2O3 catalyst for n-butane dehydrogenation to olefins. Catalysis Today, 2014, 232, 40-52.	4.4	31
15	Basicity controlled MgCo2O4 nanostructures as catalyst for viable fixation of CO2 into epoxides at atmospheric pressure. Chemical Engineering Journal, 2021, 405, 126907.	12.7	31
16	Engineered nano-foam of tri-metallic (FeCuCo) oxide catalyst for enhanced hydrogen generation via NaBH4 hydrolysis. Chemosphere, 2021, 281, 130988.	8.2	29
17	Tailoring and exploring the basicity of magnesium oxide nanostructures in ionic liquids for Claisen-Schmidt condensation reaction. Energy, 2018, 160, 635-647.	8.8	24
18	Recent developments in state-of-the-art silica-modified catalysts for the fixation of CO ₂ in epoxides to form organic carbonates. Sustainable Energy and Fuels, 2022, 6, 1198-1248.	4.9	22

#	Article	IF	CITATIONS
19	Vapor-phase dehydrogenation of ethylbenzene to styrene over a V ₂ O ₅ /TiO ₂ –Al ₂ O ₃ catalyst with CO ₂ . New Journal of Chemistry, 2017, 41, 4173-4181.	2.8	21
20	The selectively regulated vapour phase dehydrogenation of 1,4-butanediol to Î ³ -butyrolactone employing a copper-based ceria catalyst. New Journal of Chemistry, 2019, 43, 11968-11983.	2.8	21
21	Effect of potassium addition on bimetallic PtSn/Î,-Al2O3 catalyst for dehydrogenation of propane to propylene. Research on Chemical Intermediates, 2016, 42, 123-140.	2.7	19
22	Sulfonic acid functionalized PVA/PVDF composite hollow microcapsules: Highly phenomenal & recyclable catalysts for sustainable hydrogen production. Applied Surface Science, 2019, 488, 714-727.	6.1	18
23	Simultaneous dehydrogenation of 1,4- butanediol to γ-butyrolactone and hydrogenation of benzaldehyde to benzyl alcohol mediated over competent CeO2–Al2O3 supported Cu as catalyst. International Journal of Hydrogen Energy, 2020, 45, 12874-12888.	7.1	18
24	Chemoselective hydrogenation of cinnamaldehyde over a tailored oxygen-vacancy-rich Pd@ZrO ₂ catalyst. New Journal of Chemistry, 2021, 45, 5659-5681.	2.8	16
25	Tailoring the catalytic activity of basic mesoporous Cu/CeO2 catalyst by Al2O3 for selective lactonization and dehydrogenation of 1,4-butanediol to γ-butyrolactone. Catalysis Communications, 2020, 143, 106049.	3.3	16
26	Synthesis of Cu/Fe/Ti/Al2O3 Composite Granules for SO3 Decomposition in SI Cycle. Catalysis Letters, 2009, 128, 248-252.	2.6	10
27	Potassium-Doped Ni–MgO–ZrO2 Catalysts for Dry Reforming of Methane to Synthesis Gas. Topics in Catalysis, 2013, 56, 1686-1694.	2.8	10
28	Selective vapour-phase dehydrocyclization of biomass-derived 1,4-butanediol to Î ³ -butyrolactone over Cu/ZnAl2O4-CeO2 catalyst. Journal of Industrial and Engineering Chemistry, 2022, 106, 142-151.	5.8	10
29	In Situ Generation of Cu0 Supported on TiO2 Aerogel as a Catalyst for the Vapour Phase Hydrogenation of Nitrobenzene to Aniline. Catalysis Letters, 2018, 148, 2891-2900.	2.6	5
30	Exploring the confined space and active sites of Ni@OCNTs catalyst for chemoselective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Environmental Chemical Engineering, 2022, 10, 108208.	6.7	5