Hirotsugu Takizawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9646498/publications.pdf

Version: 2024-02-01

279487 315357 2,023 155 23 38 citations h-index g-index papers 161 161 161 2190 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Production of phosphor (YAGâ^¶Tb) fine particles by hydrothermal synthesis in supercritical water. Journal of Materials Chemistry, 1999, 9, 2671-2674.	6.7	146
2	Flexible dye-sensitized solar cells by 28GHz microwave irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 93-96.	2.0	146
3	Atom insertion into the CoSb3 skutterudite host lattice under high pressure. Journal of Alloys and Compounds, 1999, 282, 79-83.	2.8	100
4	Transport properties of germanium-filled CoSb3. Applied Physics Letters, 2004, 84, 5210-5212.	1.5	65
5	Preparation of TiO2 nanocrystalline electrode for dye-sensitized solar cells by 28GHz microwave irradiation. Solar Energy Materials and Solar Cells, 2004, 81, 135-139.	3.0	64
6	Enhancement of Fixed-bed Flow Reactions under Microwave Irradiation by Local Heating at the Vicinal Contact Points of Catalyst Particles. Scientific Reports, 2019, 9, 222.	1.6	62
7	Polarized Raman-scattering study of Ge and Sn-filled CoSb[sub 3]. Journal of Applied Physics, 2003, 94, 7440.	1.1	58
8	Synthesis and long-period phosphorescence of ZnGa2O4:Mn2+ spinel. Journal of Alloys and Compounds, 1997, 262-263, 60-64.	2.8	56
9	Synthesis of Gd[sub 1â^²x]Eu[sub x]Al[sub 3](BO[sub 3])[sub 4] (0 <xâ‰∰) 148,="" 2001,="" and="" electrochemical="" g430.<="" its="" journal="" of="" photoluminescence="" properties="" regions.="" society,="" td="" the="" ultraviolet="" under="" uv="" vacuum=""><td>1.3</td><td>55</td></xâ‰∰)>	1.3	55
10	Microwave Synthesis of Yttrium Iron Garnet Powder. Journal of the American Ceramic Society, 1998, 81, 2961-2964.	1.9	44
11	Synthesis and photoluminescence properties of a novel aluminosilicate Sr 3 Al 10 SiO 20 :Mn 4+ red phosphor. Journal of Luminescence, 2017, 188, 101-106.	1.5	41
12	In-situ kinetic study on non-thermal reduction reaction of CuO during microwave heating. Materials Letters, 2013, 91, 252-254.	1.3	34
13	Structure and magnetic properties of FeAl ₂ O ₄ synthesized by microwave magnetic field irradiation. Journal of Asian Ceramic Societies, 2013, 1, 41-45.	1.0	32
14	Synthesis and photoluminescence properties of Mn 4+ -doped magnetoplumbite-related aluminate X-type Ca 2 Mg 2 Al 28 O 46 and W-type CaMg 2 Al 16 O 27 red phosphors. Ceramics International, 2017, 43, 7147-7152.	2.3	32
15	Synthesis and photoluminescence properties of a novel Sr2Al6O11:Mn4+ red phosphor prepared with a B2O3 flux. Journal of Luminescence, 2018, 194, 446-451.	1.5	31
16	A new ferromagnetic polymorph of CrSb2 synthesized under high pressure. Journal of Alloys and Compounds, 1999, 287, 145-149.	2.8	30
17	Effects of Divalent Cation Substitution on Sinterability and Electrical Properties of LaCrO3 Ceramics. Journal of Solid State Chemistry, 1994, 113, 138-144.	1.4	29
18	Microwave synthesis of Fe-doped Î ² -rhombohedral boron. Materials Research Bulletin, 2002, 37, 113-121.	2.7	29

#	Article	IF	CITATIONS
19	Synthesis and Photoluminescence Properties of Mn4+-doped BaMg6Ti6O19 Phosphor. Chemistry Letters, 2014, 43, 1061-1063.	0.7	29
20	Rapid Formation and Growth of Bixbyiteâ€Type (In _{0.67} Fe _{0.33}) ₂ O ₃ by 28 GHz Microwave Irradiation. Journal of the American Ceramic Society, 2000, 83, 2321-2323.	1.9	27
21	Microwave synthesis of LaCrO3. Journal of Materials Chemistry, 1998, 8, 2765-2768.	6.7	24
22	Thermoelectric and Mechanical Properties of Angular Extruded Bi _{0.4} Sb _{1.6} Te ₃ Compounds. Materials Transactions, 2007, 48, 2724-2728.	0.4	24
23	Synthesis of Highly Concentrated Ag Nanoparticles in a Heterogeneous Solid-Liquid System under Ultrasonic Irradiation. Materials Transactions, 2010, 51, 1764-1768.	0.4	24
24	NiGe2: a new intermetallic compound synthesized under high-pressure. Journal of Alloys and Compounds, 2000, 305, 306-310.	2.8	22
25	High-Pressure Synthesis and Crystal Structure of B2S3. Journal of Solid State Chemistry, 2002, 166, 164-170.	1.4	22
26	Application of 28 GHz Microwave Irradiation to Oxidation of Ilmenite Ore for New Rutile Extraction Process. ISIJ International, 2007, 47, 1416-1421.	0.6	20
27	Synthesis of Carbon Nanotube/Silver Nanocomposites by Ultrasonication. Materials Transactions, 2010, 51, 1769-1772.	0.4	20
28	GdBO3:Eu Phosphor Particles with Uniform Size, Plate Morphology, and Non-Aggregation. Chemistry Letters, 2001, 30, 206-207.	0.7	19
29	Synthesis of Ti4O7 Nanoparticles by Carbothermal Reduction Using Microwave Rapid Heating. Catalysts, 2017, 7, 65.	1.6	19
30	Synthesis of Palladium Nanoparticles and Palladium/Spherical Carbon Composite Particles in the Solid–Liquid System of Palladium Oxide–Alcohol by Microwave Irradiation. Materials Transactions, 2011, 52, 1048-1052.	0.4	18
31	Electrochemical Properties and In-situ XAFS Observation of Li2O-V2O5-P2O5-Fe2O3 Quaternary-glass and Crystallized-glass Cathodes. Journal of Non-Crystalline Solids, 2016, 453, 28-35.	1.5	18
32	Room-temperature synthesis of \hat{i}^3 -Ga2O3 nanoparticles from gallium metal via ultrasound irradiation. Advanced Powder Technology, 2021, 32, 860-865.	2.0	18
33	Effects of 28 GHz/2.45 GHz Microwave Irradiation on the Crystallization of Blast Furnace Slag. ISIJ International, 2007, 47, 592-595.	0.6	18
34	Solid-state Synthesis of Sn2TiO4: A New Synthetic Strategy for Direct Synthesis of Sn2+ Compounds Using Microwave Irradiation. Chemistry Letters, 2010, 39, 364-365.	0.7	17
35	Luminescence of Eu3+ in La1â^'xEuxTa7O19 (0 <x⩽1) 1995,="" 217,="" 44-47.<="" alloys="" and="" compounds,="" journal="" of="" solid="" solution.="" td=""><td>2.8</td><td>16</td></x⩽1)>	2.8	16
36	Synthesis and Thermoelectric Properties of Tin-Filled Skutterudite, SnxCo4Sb12 Journal of the Ceramic Society of Japan, 2000, 108, 530-534.	1.3	16

#	Article	IF	Citations
37	Energy migration in EuTa7O19, TbTa7O19 and La0.86 Tm0.14 Ta7O19. Journal of Alloys and Compounds, 1996, 241, 16-21.	2.8	15
38	A new high-pressure polymorph of NiSb2. Intermetallics, 2000, 8, 1399-1403.	1.8	15
39	Crystal Structure of BaV13O18. Journal of Solid State Chemistry, 2001, 158, 61-67.	1.4	15
40	Crystal structure and Luminescence Properties of Sr2Al6O11:Eu2+ Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2002, 49, 1128-1133.	0.1	15
41	Synthesis, crystal structure refinement, electrical and magnetic properties of BaV13O18 and SrV13O18. Materials Research Bulletin, 2003, 38, 141-148.	2.7	15
42	Equal Channel Angular Extrusion Technique for Controlling the Texture of n-Type Bi ₂ Te ₃ Based Thermoelectric Materials. Materials Transactions, 2010, 51, 1914-1918.	0.4	15
43	Microwave synthesis of carbon-coated Ti4O7 nanorods by rapid carbothermal reduction processing. Chemical Engineering and Processing: Process Intensification, 2018, 125, 27-33.	1.8	15
44	Preparation of Highly Active Co/SiO ₂ Fischer-Tropsch Synthesis Catalyst with Chelating Agents: Effect of Chelating Agents on Structure of Co Species during Preparation Steps. Journal of the Japan Petroleum Institute, 2007, 50, 262-271.	0.4	13
45	Preparation of Mesoscopic TiO2–SnO2 Composite Grains by Spinodal Decomposition under 28 GHz Microwave Irradiation. Chemistry Letters, 2008, 37, 714-715.	0.7	13
46	Lowâ€Temperature Synthesis of Aluminum Nitride from Transition Alumina by Microwave Processing. Journal of the American Ceramic Society, 2016, 99, 3540-3545.	1.9	13
47	Enhanced reduction of copper oxides via internal heating, selective heating, and cleavage of Cu–O bond by microwave magnetic-field irradiation. Materials Chemistry and Physics, 2016, 172, 47-53.	2.0	12
48	Controlling oxygen coordination and valence of network forming cations. Scientific Reports, 2020, 10, 7178.	1.6	12
49	Synthesis of Metal Nitride by Microwave Irradiation Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46, 378-382.	0.1	11
50	High-pressure synthesis of a new calcium thioborate, CaB2S4. Materials Research Bulletin, 2003, 38, 33-39.	2.7	11
51	Effects of Al- and Sn-substitution on photoluminescence properties of Mn 4+ -doped spinel-type Mg 2 TiO 4 phosphor. Journal of Luminescence, 2017, 187, 540-545.	1.5	11
52	Facile synthesis and thermal properties of waterglass-based silica xerogel nanocomposites containing reduced graphene oxide. Ceramics International, 2019, 45, 4201-4207.	2.3	11
53	Formation of particle of bismuth–indium alloys and particle diameter by ultrasonic cavitation. Ultrasonics Sonochemistry, 2019, 50, 322-330.	3.8	11
54	Luminescence properties of La1â^χTmχTa7O19. Journal of Alloys and Compounds, 1994, 210, 103-108.	2.8	10

#	Article	IF	Citations
55	Preparation of Platinum Nanoparticles in Heterogeneous Solid-Liquid System by Ultrasound and Microwave Irradiation. Journal of Nanoscience and Nanotechnology, 2008, 8, 4482-4487.	0.9	10
56	MnGa2Sb2, a new ferromagnetic compound synthesized under high pressure. Journal of the Ceramic Society of Japan, 2009, 117, 72-75.	0.5	10
57	Superconducting properties of SmFeAsO1â^'x prepared under high-pressure condition. Journal of Physics and Chemistry of Solids, 2010, 71, 491-494.	1.9	10
58	Control of Magnetic Properties of NiMn2O4 by a Microwave Magnetic Field under Air. Materials, 2016, 9, 169.	1.3	10
59	Linear magnetic field dependence of the magnetodielectric effect in eutectic BaTiO3-CoFe2O4 multiferroic material fabricated by containerless processing. Applied Physics Letters, 2018, 112, .	1.5	10
60	In Situ Spectroscopic Analysis of the Carbothermal Reduction Process of Iron Oxides during Microwave Irradiation. Metals, 2018, 8, 49.	1.0	10
61	Stress-Induced Phase Transformation in the Systems (Ho1-xLax)4Al2O9 and (Y1-xLax)4Al2O9. Journal of the American Ceramic Society, 1994, 77, 2489-2490.	1.9	9
62	Formation mechanism of nanostructured Ag films from Ag2O particles using a sonoprocess. Colloid and Polymer Science, 2010, 288, 1061-1069.	1.0	9
63	Synthesis of homologous compounds Fe2O3(ZnO) (m=6, 8, 34) by various selective microwave heating conditions. Ceramics International, 2015, 41, 14021-14028.	2.3	9
64	Synthesis and Luminescence Properties of La1 â~' x Tb x Ta7 O 19    ( 6 Society, 1995, 142, 4269-4272.	D <â€	‰xậ€‰â‰¦
65	Luminescence properties of rare earth ions in polytantalate. Journal of Alloys and Compounds, 1998, 275-277, 746-749.	2.8	8
66	High Pressure Synthesis of New Filled Skutterudites. Materials Research Society Symposia Proceedings, 2001, 691, 1.	0.1	8
67	Synthesis and crystal structure of Na4Sn3O8. Journal of Materials Chemistry, 2002, 12, 1068-1070.	6.7	8
68	High-pressure synthesis of a new copper thioborate, CuBS2. Materials Letters, 2007, 61, 2382-2384.	1.3	8
69	In situ analysis of reaction kinetics of reduction promotion of NiMn ₂ 0 ₄ under microwave H-field irradiation. Physical Chemistry Chemical Physics, 2017, 19, 17904-17908.	1.3	8
70	Microwave Irradiation Process for Al–Sc Alloy Production. Scientific Reports, 2020, 10, 2689.	1.6	8
71	Ba0.5Sr0.5CuOz: a new perovskite related structure which forms at high pressure. Physica C: Superconductivity and Its Applications, 1992, 193, 471-475.	0.6	7
72	Synthesis of natural superlattice structure in the binary ZnO–Fe ₂ 0 ₃ system by microwave irradiation. Journal of the Ceramic Society of Japan, 2010, 118, 387-389.	0.5	7

#	Article	IF	CITATIONS
73	Scintillation properties of high-pressure-synthesized ZnO ceramics. Radiation Measurements, 2017, 106, 146-150.	0.7	7
74	Sonochemical effect and pore structure tuning of silica xerogel by ultrasonic irradiation of semi-solid hydrogel. Ultrasonics Sonochemistry, 2021, 73, 105476.	3.8	7
75	Microwave-assisted titanium nitride coating processing using nitride powders in ambient atmosphere. Journal of Alloys and Compounds, 2022, 908, 164606.	2.8	7
76	Synthesis and crystal structure of Sr2â^'xLaxCuTaOy. Journal of Alloys and Compounds, 1996, 243, 36-38.	2.8	6
77	Microwave Synthesis of Yttrium Aluminum Iron Garnet Powder. Journal of Materials Synthesis and Processing, 2001, 9, 57-61.	0.3	6
78	Facile synthesis of silverâ€nanobeadwire transparent conductive film by organicâ€precursor paint reduction. Crystal Research and Technology, 2015, 50, 319-330.	0.6	6
79	Synthesis of Lead-Free Solder Particles Using High-Speed Centrifugal Atomization. Materials Transactions, 2017, 58, 1458-1462.	0.4	6
80	Size Control of Ti4O7 Nanoparticles by Carbothermal Reduction Using a Multimode Microwave Furnace. Crystals, 2018, 8, 444.	1.0	6
81	Survey of new materials by solid state synthesis under external fields: high-pressure synthesis and microwave processing of inorganic materials. Journal of the Ceramic Society of Japan, 2018, 126, 424-433.	0.5	6
82	Preparation and Luminescent Properties of MO2 (M=Zr, Hf) with Baddeleyite Structure Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46, 175-179.	0.1	5
83	Microstructural Control of the TiO ₂ -SnO ₂ Binary System and Synthesis of SnO ₂ Nanowhiskers by Microwave Irradiation. Materials Transactions, 2008, 49, 879-884.	0.4	5
84	Preparation of barium titanate powders by microwave-assisted liquid phase process at ambient pressure. Journal of the Ceramic Society of Japan, 2009, 117, 388-391.	0.5	5
85	Oriented texture formation of crystallized Nd2Fe14B through a microwave heating process. Journal of Alloys and Compounds, 2016, 685, 566-570.	2.8	5
86	Containerless melting and synthesis of eutectic BaTiO 3 /CoFe 2 O 4 by microwave irradiation. Materials Letters, 2018, 216, 42-45.	1.3	5
87	Kinetics of microwave synthesis of AlN by carbothermalâ€reductionâ€nitridation at low temperature. Journal of the American Ceramic Society, 2018, 101, 4905-4910.	1.9	5
88	Microwave Heating Behavior in SiC Fiber-MO2 Mixtures (M = Ce, Zr)â€"Selective Heating of Micrometer-Sized Fibers Facilitated by ZrO2 Powder. Processes, 2020, 8, 47.	1.3	5
89	Non-Equilibrium Nature of Microwave Inorganic and Materials Chemistry. Journal of the Institute of Electrical Engineers of Japan, 2012, 132, 17-19.	0.0	5
90	Synthesis and crystal structure of the oxygen defect perovskites containing copper and tantalum. Solid State Ionics, 1998, 108, 337-341.	1.3	4

#	Article	IF	CITATIONS
91	Cation Ordering in the Oxygen Deficient Perovskite Sr2-xLaxMg1-yTa1+yOz Journal of the Ceramic Society of Japan, 1999, 107, 209-214.	1.3	4
92	Synthesis and electrical properties of Ba2Nb5â^'xZrxO9. Journal of Alloys and Compounds, 2000, 308, 109-114.	2.8	4
93	High Pressure Synthesis and Thermoelectric Properties of CoSb3-based Filled Skutterudites. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2006, 16, 322-328.	0.1	4
94	ã∱Ÿã∱ªæ³¢ã«ã,^ã,<金属ã®åŠç†±ã•å応. Materia Japan, 2006, 45, 577-580.	0.1	4
95	Fabrication of (Zn _{1â^'} Al <i>_x</i> blt;i> _x Al <i>_x_x_x<i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i><i>< td=""><td>kgt;0)<:</td><td>suþ>5&</td></i><></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	kgt;0)<:	suþ>5&
96	Synthesis of Noble Metal-Doped Cu Nanoparticles by Ultrasonication. Materials Transactions, 2013, 54, 1496-1501.	0.4	4
97	Effect of organic hydrophobic groups on the pore structure and thermal properties of waterglass-based silica xerogels. Journal of the Ceramic Society of Japan, 2017, 125, 906-912.	0.5	4
98	Effect of Aspect Ratio on the Permittivity of Graphite Fiber in Microwave Heating. Materials, 2018, 11, 169.	1.3	4
99	High-pressure synthesis and crystal structure of a novel intermetallic compound Mn(Al,Ge)5. Journal of Alloys and Compounds, 2019, 806, 58-62.	2.8	4
100	Optical Properties of Stannic Oxide Obtained by 28GHz Microwave Irradiation Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2000, 47, 999-1003.	0.1	3
101	Synthesis and Microstructural Control of In _{(ZnO)₃ Layered Compound by Microwave-Heating. Materials Science Forum, 0, 620-622, 85-88.}	0.3	3
102	Photoluminescence Properties of the Magnetoplumbite-Type BaMg ₆ Ti ₆ O ₁₉ :Mn ^{4+2TiO₄:Mn⁴⁺. Materials Science Forum, 0, 868, 73-78.}	ot: 0.3	3
103	Fabrication Study of Nano-metal related Material by Solid-liquid Ultrasonic and Microwave Reaction. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 929-936.	0.1	3
104	Nitridation Reaction of Titanium Powders by 2.45 GHz Multimode Microwave Irradiation using a SiC Susceptor in Atmospheric Conditions. Processes, 2020, 8, 20.	1.3	3
105	Reduction of metal oxides using thermogravimetry under microwave irradiation. AIP Advances, 2021, 11, .	0.6	3
106	Low-temperature hydrogen reduction of iron oxide by controlling the water potential using a CaH2 drying agent. Journal of Solid State Chemistry, 2021, 302, 122441.	1.4	3
107	Cation ordering in the perovskite-type Sr2â^'xLaxCo1â^'yTa1+yO6. Journal of Alloys and Compounds, 1999, 285, 64-68.	2.8	2
108	Distortion and cation ordering in LaSr(Ni1â^'xCux)TaO6. Journal of Alloys and Compounds, 1999, 285, 69-72.	2.8	2

#	Article	IF	CITATIONS
109	Synthesis and Lattice Distortion of the Perovskite-Type Oxides Sr2(Sr1-xMx)TaOz(M=Ca, Nd) Journal of the Ceramic Society of Japan, 1999, 107, 633-638.	1.3	2
110	Synthesis of Gd[sub 1â°'x]Eu[sub x]Al[sub 3] (BO[sub 3])[sub 4] (0â‰ x â‰ ‡) and Its Photoluminescence Properties under UV and Vacuum Ultraviolet Regions [Journal of The Electrochemical Society, 148, G430 (2001)]. Journal of the Electrochemical Society, 2002, 149, L3.	1.3	2
111	Synthesis, crystal structure and electrical properties of Ba2Nb5â^'xVxO9 (x<1.9). Journal of Alloys and Compounds, 2002, 339, 268-274.	2.8	2
112	Electrical Properties and Microstructures of Sol-Gel-Deposited Lead Zirconate Titanate Thin Films Crystallized by 28 GHz Microwave Irradiation. Japanese Journal of Applied Physics, 2005, 44, 6914-6917.	0.8	2
113	Morphology Control of Silver Related Materials by Ultrasonic Irradiation. Journal of the Ceramic Society of Japan, 2007, 115, 934-937.	0.5	2
114	Process Development and Application of Noble Metal Nanoparticle Related Materials by Total Eco-design. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 186-193.	0.1	2
115	Protective Agent Free Eco-Synthesis of Silver Nanowire via Needle-Shaped Silver Acetate Precursor. Materials Science Forum, 0, 804, 115-118.	0.3	2
116	Microwave Synthesis of Ti ₄ O ₇ or AlN Nanoparticles by Rapid Carbothermal Reduction Process. Journal of the Japan Petroleum Institute, 2018, 61, 88-97.	0.4	2
117	Enhancement of transient thermal stability and flame retardancy of hydrophobic silica xerogel composites via carbon family material doping. Journal of Asian Ceramic Societies, 2019, 7, 449-459.	1.0	2
118	Vanadium coordination environment in phospho-vanadate glass for improving water durability. Journal of the Ceramic Society of Japan, 2020, 128, 273-278.	0.5	2
119	Fabrication and growth of c-axis textured Nd2Fe14B thin films by high-rate sputtering. Journal of Applied Physics, 2020, 127, 103901.	1.1	2
120	Decrease in the Crystallite Diameter of Solid Crystalline Magnetite around the Curie Temperature by Microwave Magnetic Fields Irradiation. Nanomaterials, 2021, 11, 984.	1.9	2
121	Kinetics of CO2 splitting by microwave irradiation using honeycomb-like pellets of Fe3O4/FeO. Chemical Engineering Journal, 2022, 428, 131087.	6.6	2
122	Effect of H-field or E-field on Sintering and Decrystallization of Titanium Oxides during 2.45 GHz Microwave Heating. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2012, 59, 553-556.	0.1	2
123	Microwave Processing of Inorganic Materials. Journal of the Japan Society of Colour Material, 2009, 82, 56-60.	0.0	2
124	Crystal Structures and Physical Properties of Transition Metal Germanides Journal of the Society of Materials Engineering for Resources of Japan, 1991, 4, 64-74.	0.2	2
125	Synthesis and Electrical Properties of LaCr1-xMxO3(Mu=Cu,Mg,Zn) Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1993, 1993, 670-672.	0.1	1
126	Multiphase composites of tetragonal zirconia agglomerate dispersed into alumina and alumina-zirconia matrices. Journal of Materials Science, 1994, 29, 2395-2400.	1.7	1

#	Article	IF	CITATIONS
127	Synthesis and electrical properties of (La1â^'xMx)3Ni2TaO9 (M = Ca, Sr). Materials Letters, 1994, 21, 101-104.	1.3	1
128	Influence of Lattice Size and Symmetric Property of ANbO3 (Perovskite Type) Block on the Formation of AnNbn+3mO3n+3m[(ANbO3)n(NbO)3m] (A=Ba, Sr) Journal of the Ceramic Society of Japan, 2001, 109, 1023-1027.	1.3	1
129	Eco-Fabrication of Metal Nanoparticle Related Materials by Home Electric Appliances. Materials Science Forum, 0, 620-622, 185-188.	0.3	1
130	Fabrication of TiN and TiCN Coatings by Microwave Irradiation. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2010, 57, 753-757.	0.1	1
131	Fabrication and Thermoelectric Properties of Al-Doped (ZnO) ₅ ln ₂ 0 ₃ by Microwave Heating. Materials Science Forum, 0, 761, 27-31.	0.3	1
132	Eco-Fabrication of Metal Nanoparticle Related Materials by Non-Equilibrium Reaction Field. Materials Science Forum, 2013, 761, 87-90.	0.3	1
133	Synthesis of aluminium nitride under 2.45 GHz microwave irradiation. International Journal of Nanotechnology, 2013, 10, 63.	0.1	1
134	Synthesis and Characterization of Ag/Graphene Nanocomposites by Solid-Liquid Sonochemical Reactions. Materials Science Forum, 0, 804, 119-122.	0.3	1
135	Synthesis and Photoluminescence Properties of SrLaAlO ₄ : Ti Green-Emitting Phosphor. Materials Science Forum, 0, 868, 1-5.	0.3	1
136	Synthesis of high aspect ratio silver nanowire precursor by two-step ultrasonic irradiation and its application to transparent conductive film. Journal of the Ceramic Society of Japan, 2019, 127, 655-662.	0.5	1
137	Crystal structure and grain formation mechanism of bismuth–indium particles generated by ultrasonic irradiation. Journal of Materials Science, 2019, 54, 10998-11008.	1.7	1
138	Soft Chemical Processing of Metyl-Nitroanilinium Dihydrogenmonophosphate Complex Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1993, 40, 1002-1006.	0.1	0
139	Luminescence of Tm3+-doped YTa7O19 Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1993, 1993, 630-634.	0.1	0
140	Upconversion Fluorescence of Tellurite Glasses Doped with Rare Earths Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1995, 42, 61-66.	0.1	0
141	Fabrication of Porous SiC Ceramics Using Glass Beads Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1996, 43, 1461-1465.	0.1	0
142	Microstructure and the Anisotropic Thermoelectric Properties of .BETAFeSi2 Sintered under High-Pressure Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1997, 44, 39-43.	0.1	0
143	Synthesis of Aluminium Nitride using Urea-Precursor Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1998, 45, 31-35.	0.1	0
144	High-Pressure Synthesis and the Structure Refinement of CoSb3-Based Filled-Skutterudites Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46, 1113-1117.	0.1	0

#	Article	IF	CITATIONS
145	Effect of Tin-atom Insertion on Thermoelectric Properties of SnxCo4Sb12 Skutterudite Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2000, 47, 1170-1174.	0.1	O
146	Synthesis and Electrical Property of Novel Compound, KxCax/2Sn8-x/2O16(x.LEQ.2) with Hollandite Structure Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2001, 48, 251-253.	0.1	0
147	Synthesis of a New Ferromagnetic Intermetallic Compound, Mn3Ge, with the L12-Type Structure Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2002, 49, 47-51.	0.1	0
148	Synthesis, Crystal Structure and Electrical Properties of Ba2Nb5-xVxO9 (x < 1.9) ChemInform, 2003, 34, no.	0.1	0
149	Fabrication and Applications of Nano-Metal Particle Composites by Ultrasonic Eco-Process. Key Engineering Materials, 2006, 317-318, 231-234.	0.4	0
150	Synthesis and optimization of silver nanowire transparent conductive film by organic needle-shaped precursor painting reduction method. , $2016, , .$		0
151	Nanoparticle Fabrication. , 2018, , 219-242.		0
152	High Pressure Synthesis and Crystal Chemistry of Metalloid-Rich Intermetallic Compounds. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2005, 15, 303-309.	0.1	0
153	Effect of Multimode and Single-Mode Microwave Processing of Anisotropic Grain Growth of CuFeO2. , 2018, , .		0
154	IN-SITU SPECTROSCOPY AND TWO-COLOR THERMOGRAPHY DURING MICROWAVE IRRADIATION IN MATERIALS PROCESSING. , 0, , .		0
155	<i>C-axis texture of high-rate-sputtered Nd ₂ Fe ₁₄ B thin films: independence of sheet texture of Mo underlayer. Japanese Journal of Applied Physics, 0, , .	0.8	0