Peng Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9645389/publications.pdf

Version: 2024-02-01

62 papers 8,332 citations

218677
26
h-index

60 g-index

62 all docs

62 docs citations

62 times ranked 15224 citing authors

#	Article	IF	CITATIONS
1	Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nature Reviews Drug Discovery, 2009, 8, 579-591.	46.4	4,327
2	Redox Regulation of Cell Survival. Antioxidants and Redox Signaling, 2008, 10, 1343-1374.	5.4	1,464
3	Novel Action of Paclitaxel against Cancer Cells: Bystander Effect Mediated by Reactive Oxygen Species. Cancer Research, 2007, 67, 3512-3517.	0.9	338
4	xCT: A Critical Molecule That Links Cancer Metabolism to Redox Signaling. Molecular Therapy, 2020, 28, 2358-2366.	8.2	143
5	cGAS/STING axis mediates a topoisomerase II inhibitor–induced tumor immunogenicity. Journal of Clinical Investigation, 2019, 129, 4850-4862.	8.2	136
6	Modulation of Redox Homeostasis by Inhibition of MTHFD2 in Colorectal Cancer: Mechanisms and Therapeutic Implications. Journal of the National Cancer Institute, 2019, 111, 584-596.	6.3	125
7	Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nature Communications, 2020, 11, 1507.	12.8	121
8	Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	109
9	Synthesis of Carbazoles <i>via</i> Oneâ€Pot Copperâ€Catalyzed Amine Insertion into Cyclic Diphenyleneiodoniums as a Strategy to Generate a Drugâ€Like Chemical Library. Advanced Synthesis and Catalysis, 2013, 355, 2172-2178.	4.3	101
10	Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget, 2015, 6, 21148-21158.	1.8	99
11	Elimination of stem-like cancer cell side-population by auranofin through modulation of ROS and glycolysis. Cell Death and Disease, 2018, 9, 89.	6.3	89
12	Increased Expression of EIF5A2, Via Hypoxia or Gene Amplification, Contributes to Metastasis and Angiogenesis of Esophageal Squamous Cell Carcinoma. Gastroenterology, 2014, 146, 1701-1713.e9.	1.3	87
13	Regulation of stem-like cancer cells by glutamine through \hat{l}^2 -catenin pathway mediated by redox signaling. Molecular Cancer, 2017, 16, 51.	19.2	81
14	Mutant Kras- and p16-regulated NOX4 activation overcomes metabolic checkpoints in development of pancreatic ductal adenocarcinoma. Nature Communications, 2017, 8, 14437.	12.8	77
15	Cancer stem cells, metabolism, and therapeutic significance. Tumor Biology, 2016, 37, 5735-5742.	1.8	69
16	Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and metastasis through upregulation of SNAIL expression. International Journal of Oncology, 2017, 50, 252-262.	3.3	64
17	Targeting cancer cell mitochondria as a therapeutic approach: recent updates. Future Medicinal Chemistry, 2017, 9, 929-949.	2.3	64
18	Design, Synthesis, and Evaluation of VHL-Based EZH2 Degraders to Enhance Therapeutic Activity against Lymphoma. Journal of Medicinal Chemistry, 2021, 64, 10167-10184.	6.4	50

#	Article	IF	CITATIONS
19	Chemotherapy induces tumor immune evasion by upregulation of programmed cell death ligandÂ1 expression in bone marrow stromal cells. Molecular Oncology, 2017, 11, 358-372.	4.6	43
20	Heterocyclic Iodoniums for the Assembly of Oxygen-Bridged Polycyclic Heteroarenes with Water as the Oxygen Source. Organic Letters, 2018, 20, 4815-4818.	4.6	42
21	Regulation of PD-L1 expression in K-ras-driven cancers through ROS-mediated FGFR1 signaling. Redox Biology, 2021, 38, 101780.	9.0	42
22	Metabolic activation of mitochondria in glioma stem cells promotes cancer development through a reactive oxygen species-mediated mechanism. Stem Cell Research and Therapy, 2015, 6, 198.	5.5	40
23	Cooperativity of Oncogenic K-Ras and Downregulated p16/INK4A in Human Pancreatic Tumorigenesis. PLoS ONE, 2014, 9, e101452.	2.5	39
24	Oxidative stress induces monocyteâ€toâ€myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma. Clinical and Translational Medicine, 2020, 10, e41.	4.0	34
25	Domino Carbopalladation/C–H Activation as a Quick Access to Polycyclic Frameworks. Organic Letters, 2018, 20, 712-715.	4.6	32
26	Action of (E)-2′-Deoxy-2′-(fluoromethylene)cytidine on DNA Metabolism: Incorporation, Excision, and Cellular Response. Molecular Pharmacology, 2002, 61, 222-229.	2.3	29
27	<i>PDSS2</i> Deficiency Induces Hepatocarcinogenesis by Decreasing Mitochondrial Respiration and Reprogramming Glucose Metabolism. Cancer Research, 2018, 78, 4471-4481.	0.9	26
28	Metabolic reprogramming and redox adaptation in sorafenibâ€resistant leukemia cells: detected by untargeted metabolomics and stable isotope tracing analysis. Cancer Communications, 2019, 39, 1-13.	9.2	25
29	Synthesis of Fluorenes with an Allâ€Carbon Quaternary Center <i>via</i> Palladiumâ€Catalyzed Dual Arylation using Cyclic Diaryliodonium Triflates. Advanced Synthesis and Catalysis, 2017, 359, 1152-1156.	4.3	24
30	Relayed Regioselective Alkynylation/Olefination of Unsymmetrical Cyclic Diaryliodonium Species Catalyzed by Cu and Pd: Affording Fluorescent Cytotoxic Benzoxazoles. Chemistry - A European Journal, 2015, 21, 18915-18920.	3.3	23
31	Selective killing of K-ras–transformed pancreatic cancer cells by targeting NAD(P)H oxidase. Chinese Journal of Cancer, 2015, 34, 166-76.	4.9	22
32	Loss of mitochondrial aconitase promotes colorectal cancer progression via SCD1-mediated lipid remodeling. Molecular Metabolism, 2021, 48, 101203.	6.5	22
33	Identification of NDUFAF1 in mediating K-Ras induced mitochondrial dysfunction by a proteomic screening approach. Oncotarget, 2015, 6, 3947-3962.	1.8	21
34	Mitochondrial TXNRD3 confers drug resistance via redox-mediated mechanism and is a potential therapeutic target in vivo. Redox Biology, 2020, 36, 101652.	9.0	20
35	New tranylcypromine derivatives containing sulfonamide motif as potent LSD1 inhibitors to target acute myeloid leukemia: Design, synthesis and biological evaluation. Bioorganic Chemistry, 2020, 99, 103808.	4.1	20
36	Reductive TCA cycle catalyzed by wild-type IDH2 promotes acute myeloid leukemia and is a metabolic vulnerability for potential targeted therapy. Journal of Hematology and Oncology, 2022, 15, 30.	17.0	19

#	Article	IF	Citations
37	Oncogenic K-ras Induces Mitochondrial OPA3 Expression to Promote Energy Metabolism in Pancreatic Cancer Cells. Cancers, 2020, 12, 65.	3.7	18
38	Overexpression of GLT1D1 induces immunosuppression through glycosylation of PDâ€L1 and predicts poor prognosis in Bâ€cell lymphoma. Molecular Oncology, 2020, 14, 1028-1044.	4.6	18
39	Design and Synthesis of Dual EZH2/BRD4 Inhibitors to Target Solid Tumors. Journal of Medicinal Chemistry, 2022, 65, 6573-6592.	6.4	17
40	Wild-type IDH2 protects nuclear DNA from oxidative damage and is a potential therapeutic target in colorectal cancer. Oncogene, 2021, 40, 5880-5892.	5.9	15
41	The Role of Oncogenes and Redox Signaling in the Regulation of PD-L1 in Cancer. Cancers, 2021, 13, 4426.	3.7	15
42	New Mild and Simple Approach to Isothiocyanates: A Class of Potent Anticancer Agents. Molecules, 2017, 22, 773.	3.8	14
43	Regulation of CD137 expression through Kâ€Ras signaling in pancreatic cancer cells. Cancer Communications, 2019, 39, 1-11.	9.2	14
44	Impact of <i>Nrf2</i> on tumour growth and drug sensitivity in oncogenic K-ras-transformed cells <i>in vitro</i> and <i>in vivo</i> . Free Radical Research, 2018, 52, 661-671.	3.3	13
45	Design, synthesis and biological evaluation of $\langle i \rangle N \langle i \rangle$ -arylsulfonyl carbazoles as novel anticancer agents. RSC Advances, 2018, 8, 17183-17190.	3.6	13
46	Autocrine <scp>INSL</scp> 5 promotes tumor progression and glycolysis via activation of <scp>STAT</scp> 5 signaling. EMBO Molecular Medicine, 2020, 12, e12050.	6.9	12
47	Modular metal-free catalytic radical annulation of cyclic diaryliodoniums to access π-extended arenes. Green Chemistry, 2021, 23, 1972-1977.	9.0	12
48	Mevalonate Blockade in Cancer Cells Triggers CLEC9A+ Dendritic Cell-Mediated Antitumor Immunity. Cancer Research, 2021, 81, 4514-4528.	0.9	12
49	MGMT in colorectal cancer: a promising component of personalized treatment. Tumor Biology, 2016, 37, 11443-11456.	1.8	11
50	CD137 expression in cancer cells: regulation and significance. Cancer Communications, 2019, 39, 70.	9.2	11
51	Cisplatin and gemcitabine exert opposite effects on immunotherapy with PD-1 antibody in K-ras-driven cancer. Journal of Advanced Research, 2022, 40, 109-124.	9.5	10
52	Modulation of lactate-lysosome axis in dendritic cells by clotrimazole potentiates antitumor immunity., 2021, 9, e002155.		9
53	Diverse effects of chemotherapeutic agents on immune cell function and implications in immunochemotherapy. Cancer Communications, 2021, 41, 432-435.	9.2	8
54	Synthesis and biological evaluation of santacruzamate A and analogs as potential anticancer agents. RSC Advances, 2015, 5, 1109-1112.	3.6	7

#	Article	IF	CITATION
55	<i>Smad4</i> Deficiency Promotes Pancreatic Cancer Immunogenicity by Activating the Cancerâ€Autonomous DNAâ€5ensing Signaling Axis. Advanced Science, 2022, 9, e2103029.	11.2	7
56	Modulation of energy metabolism to overcome drug resistance in chronic myeloid leukemia cells through induction of autophagy. Cell Death Discovery, 2022, 8, 212.	4.7	7
57	Highly Reactive Cyclic Monoaryl Iodoniums Tuned as Carbene Generators Couple with Nucleophiles under Metal-Free Conditions. IScience, 2020, 23, 101307.	4.1	6
58	Tandem cyclization/arylation of diaryliodoniums <i>via in situ</i> constructed benzoxazole as a directing group for atom-economical transformation. Organic Chemistry Frontiers, 2022, 9, 1137-1142.	4.5	6
59	Identification of cisplatin sensitizers through high-throughput combinatorial screening. International Journal of Oncology, 2018, 53, 1237-1246.	3.3	5
60	Identification of the Benzoimidazole Compound as a Selective FLT3 Inhibitor by Cell-Based High-Throughput Screening of a Diversity Library. Journal of Medicinal Chemistry, 2022, 65, 3597-3605.	6.4	3
61	Characterization of H2O2-Induced Alterations in Global Transcription of mRNA and IncRNA. Antioxidants, 2022, 11, 495.	5.1	2
62	Treatment and Survival Outcomes Associated With Platinum Plus Low-Dose, Long-term Fluorouracil for Metastatic Nasopharyngeal Carcinoma. JAMA Network Open, 2021, 4, e2138444.	5.9	0