languang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9645358/publications.pdf

Version: 2024-02-01

177	19,432	61 h-index	136
papers	citations		g-index
179	179	179	11393
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Thermal Runaway of Lithiumâ€lon Batteries Employing Flameâ€Retardant Fluorinated Electrolytes. Energy and Environmental Materials, 2023, 6, .	7.3	19
2	A Constant Current Control Method With Improved Dynamic Performance for <i>CLLC</i> Converters. IEEE Transactions on Power Electronics, 2022, 37, 1509-1523.	5.4	10
3	Parameter-independent error correction for potential measurements by reference electrode in lithium-ion batteries. Journal of Energy Chemistry, 2022, 67, 34-45.	7.1	5
4	Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging. Energy, 2022, 239, 122097.	4.5	30
5	Estimation of <scp>NCM111</scp> /graphite acoustic properties under different lithium stoichiometry based on nondestructive acoustic in situ testing. International Journal of Energy Research, 2022, 46, 2633-2654.	2.2	4
6	In-depth investigation of the exothermic reactions between lithiated graphite and electrolyte in lithium-ion battery. Journal of Energy Chemistry, 2022, 69, 593-600.	7.1	34
7	Lithium-ion batteries under pulsed current operation to stabilize future grids. Cell Reports Physical Science, 2022, 3, 100708.	2.8	19
8	Novel non-destructive detection methods of lithium plating in commercial lithium-ion batteries under dynamic discharging conditions. Journal of Power Sources, 2022, 524, 231075.	4.0	16
9	Thermal runaway modeling of LiNi0.6Mn0.2Co0.2O2/graphite batteries under different states of charge. Journal of Energy Storage, 2022, 49, 104090.	3.9	19
10	Temperature distribution of lithium ion battery module with inconsistent cells under pulsed heating method. Applied Thermal Engineering, 2022, 212, 118529.	3.0	12
11	Foreign matter defect battery and sudden spontaneous combustion. ETransportation, 2022, 12, 100170.	6.8	34
12	An ultra-fast charging strategy for lithium-ion battery at low temperature without lithium plating. Journal of Energy Chemistry, 2022, 72, 442-452.	7.1	31
13	A comprehensive research on internal short circuits caused by copper particle contaminants on cathode in lithium-ion batteries. ETransportation, 2022, 13, 100183.	6.8	19
14	Modeling the inhomogeneous lithium plating in lithium-ion batteries induced by non-uniform temperature distribution. Electrochimica Acta, 2022, 425, 140701.	2.6	42
15	A mechanistic calendar aging model of lithiumâ€ion battery considering solid electrolyte interface growth. International Journal of Energy Research, 2022, 46, 15521-15534.	2.2	14
16	Inhomogeneous degradation induced by lithium plating in a large-format lithium-ion battery. Journal of Power Sources, 2022, 542, 231753.	4.0	19
17	In situ detection method for Li-ion battery of separator pore closure defects based on abnormal voltage in rest condition. Journal of Power Sources, 2022, 542, 231785.	4.0	7
18	Multilevel Energy Management of a DC Microgrid Based on Virtual-Battery Model Considering Voltage Regulation and Economic Optimization. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 2881-2895.	3.7	11

#	Article	IF	Citations
19	Errors in the reference electrode measurements in real lithium-ion batteries. Journal of Power Sources, 2021, 481, 228933.	4.0	30
20	Experimental study on thermal runaway propagation of lithium-ion battery modules with different parallel-series hybrid connections. Journal of Cleaner Production, 2021, 284, 124749.	4.6	61
21	A model-based continuous differentiable current charging approach for electric vehicles in direct current microgrids. Journal of Power Sources, 2021, 482, 229019.	4.0	19
22	Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Materials, 2021, 34, 563-573.	9.5	264
23	Lithiumâ€platingâ€free fast charging of largeâ€format lithiumâ€ion batteries with reference electrodes. International Journal of Energy Research, 2021, 45, 7918-7932.	2.2	17
24	Drive circuitry of an electric vehicle enabling rapid heating of the battery pack at low temperatures. IScience, 2021, 24, 101921.	1.9	26
25	Parameter identification of fractionalâ€order model with transfer learning for aging lithiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 12825-12837.	2.2	14
26	A Coupled Optimization-oriented Reduced-order Aging Model for Graphite-LiFePO ₄ Li-ion Batteries under Dynamic Micorgrid Conditions., 2021,,.		3
27	Kinetic Monte Carlo Simulation of Lithium Dendrite Growth in Lithium-ion Battery. , 2021, , .		1
28	A Novel Data Augmentation and Swift Optimal Sizing Framework for PV-based EV Charging Microgrid. , 2021, , .		3
29	A Vehicle-to-Grid Frequency Regulation Framework for Fast Charging Infrastructures Considering Power Performances of Lithium-ion Batteries and Chargers. , 2021, , .		3
30	A Semi-Decentralized Control Strategy of a PV-based Microgrid with Battery Energy Storage Systems for Electric Vehicle Charging and Hydrogen Production. , 2021, , .		1
31	Detection of lithium plating based on the distribution of relaxation times. , 2021, , .		1
32	Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials, 2021, 37, 77-86.	9.5	78
33	A review of the internal short circuit mechanism in lithiumâ€ion batteries: Inducement, detection and prevention. International Journal of Energy Research, 2021, 45, 15797-15831.	2.2	60
34	Thermal oxidation characteristics for smoke particles from an abused prismatic Li(Ni0.6Co0.2Mn0.2)O2 battery. Journal of Energy Storage, 2021, 39, 102639.	3.9	12
35	Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy, 2021, 85, 105878.	8.2	116
36	Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials, 2021, 39, 395-402.	9.5	74

#	Article	IF	CITATIONS
37	An adaptive droop control for distributed battery energy storage systems in microgrids with DAB converters. International Journal of Electrical Power and Energy Systems, 2021, 130, 106944.	3.3	23
38	An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids. Energy, 2021, 233, 121155.	4. 5	28
39	Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries. Journal of Energy Chemistry, 2021, 61, 269-280.	7.1	48
40	A decomposed electrode model for real-time anode potential observation of lithium-ion batteries. Journal of Power Sources, 2021, 513, 230529.	4.0	17
41	In-built ultraconformal interphases enable high-safety practical lithium batteries. Energy Storage Materials, 2021, 43, 248-257.	9.5	49
42	Highâ€Voltage and Highâ€Safety Practical Lithium Batteries with Ethylene Carbonateâ€Free Electrolyte. Advanced Energy Materials, 2021, 11, 2102299.	10.2	59
43	Equivalence of time and frequency domain modeling for lithium ion batteries. , 2021, , .		2
44	Analysis and Improvement Measures of Driving Range Attenuation of Electric Vehicles in Winter. World Electric Vehicle Journal, 2021, 12, 239.	1.6	10
45	Optimal Charging of Lithium-ion Batteries Based on Model Predictive Control Considering Lithium Plating and Cell Temperature. , 2021, , .		2
46	External Liquid Cooling Method for Lithium-ion Battery Modules under Ultra-fast Charging. , 2021, , .		1
47	Analysis on Self-heating Process of Battery Modules in Energy Storage Station Based on Equivalent Circuit Model., 2021,,.		1
48	Ultrasonic Tomography Study of Metal Defect Detection in Lithium-Ion Battery. Frontiers in Energy Research, 2021, 9, .	1.2	12
49	Lithium-ion battery pack equalization based on charging voltage curves. International Journal of Electrical Power and Energy Systems, 2020, 115, 105516.	3.3	54
50	Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station. Applied Energy, 2020, 259, 114146.	5.1	71
51	Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries. Applied Energy, 2020, 259, 114143.	5.1	61
52	Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications, 2020, 11, 5100.	5.8	133
53	Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry. Journal of Energy Storage, 2020, 31, 101670.	3.9	45
54	Impact of battery degradation models on energy management of a grid-connected DC microgrid. Energy, 2020, 207, 118228.	4. 5	77

#	Article	IF	CITATIONS
55	A method of cell-to-cell variation evaluation for battery packs in electric vehicles with charging cloud data. ETransportation, 2020, 6, 100077.	6.8	37
56	A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life. Applied Energy, 2020, 280, 115957.	5.1	74
57	Probing the Thermal-Driven Structural and Chemical Degradation of Ni-Rich Layered Cathodes by Co/Mn Exchange. Journal of the American Chemical Society, 2020, 142, 19745-19753.	6.6	122
58	An Experimental Study on Preventing Thermal Runaway Propagation in Lithium-lon Battery Module Using Aerogel and Liquid Cooling Plate Together. Fire Technology, 2020, 56, 2579-2602.	1.5	58
59	Determination of the Differential Capacity of Lithium-lon Batteries by the Deconvolution of Electrochemical Impedance Spectra. Energies, 2020, 13, 915.	1.6	22
60	A reliable approach of differentiating discrete sampled-data for battery diagnosis. ETransportation, 2020, 3, 100051.	6.8	71
61	Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety. Nano Energy, 2020, 71, 104643.	8.2	72
62	Massive battery pack data compression and reconstruction using a frequency division model in battery management systems. Journal of Energy Storage, 2020, 28, 101252.	3.9	42
63	Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections. Journal of Cleaner Production, 2020, 255, 120277.	4.6	60
64	Investigation on Internal Short Circuit Identification of Lithium-Ion Battery Based on Mean-Difference Model and Recursive Least Square Algorithm. , 2020, , .		0
65	Physics-based fractional-order model with simplified solid phase diffusion of lithium-ion battery. Journal of Energy Storage, 2020, 30, 101404.	3.9	44
66	A Novel Framework for Optimal Sizing of A DC Microgrid Considering Energy Management and Battery Degradation. , 2020, , .		1
67	Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine. IEEE Transactions on Vehicular Technology, 2019, 68, 8583-8592.	3.9	265
68	A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles. Energy, 2019, 185, 361-371.	4.5	47
69	A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation, 2019, 1, 100005.	6.8	854
70	Comparison of the Overcharge Behaviors of Lithium-ion Batteries Under Different Test Conditions. Energy Procedia, 2019, 158, 4921-4926.	1.8	11
71	Battery remaining discharge energy estimation based on prediction of future operating conditions. Journal of Energy Storage, 2019, 25, 100836.	3.9	30
72	Experimental Investigation on the Feasibility of Heat Pipe-Based Thermal Management System to Prevent Thermal Runaway Propagation. Journal of Electrochemical Energy Conversion and Storage, 2019, 16, .	1.1	17

#	Article	IF	CITATIONS
73	Experimental Study on Module-to-Module Thermal Runaway-Propagation in a Battery Pack. Journal of the Electrochemical Society, 2019, 166, A2065-A2073.	1.3	59
74	An accurate parameters extraction method for a novel on-board battery model considering electrochemical properties. Journal of Energy Storage, 2019, 24, 100745.	3.9	30
75	Boundaries of high-power charging for long-range battery electric car from the heat generation perspective. Energy, 2019, 182, 211-223.	4.5	19
76	Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Applied Energy, 2019, 250, 323-332.	5.1	164
77	Thermal Runaway Propagation Assessment of Different Battery Pack Designs Using the TF5 Draft as Framework. Journal of the Electrochemical Society, 2019, 166, A1653-A1659.	1.3	10
78	Theoretical and experimental analysis of the lithium-ion battery thermal runaway process based on the internal combustion engine combustion theory. Energy Conversion and Management, 2019, 185, 211-222.	4.4	27
79	An experimental and analytical study of thermal runaway propagation in a large format lithium ion battery module with NCM pouch-cells in parallel. International Journal of Heat and Mass Transfer, 2019, 135, 93-103.	2.5	76
80	Volume Deformation of Large-Format Lithium Ion Batteries under Different Degradation Paths. Journal of the Electrochemical Society, 2019, 166, A4106-A4114.	1.3	27
81	A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. ETransportation, 2019, 2, 100034.	6.8	230
82	Thermal Runaway Triggered by Plated Lithium on the Anode after Fast Charging. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 46839-46850.	4.0	144
83	A Comparative Study of Charging Voltage Curve Analysis and State of Health Estimation of Lithium-ion Batteries in Electric Vehicle. Automotive Innovation, 2019, 2, 263-275.	3.1	47
84	An easy-to-implement multi-point impedance technique for monitoring aging of lithium ion batteries. Journal of Power Sources, 2019, 417, 188-192.	4.0	72
85	Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles. Journal of Power Sources, 2018, 377, 161-188.	4.0	330
86	State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter. Journal of Power Sources, 2018, 383, 50-58.	4.0	192
87	Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 2018, 10, 246-267.	9.5	1,939
88	The Co-estimation of State of Charge, State of Health, and State of Function for Lithium-Ion Batteries in Electric Vehicles. IEEE Transactions on Vehicular Technology, 2018, 67, 92-103.	3.9	369
89	BP Neural Network Model of Lithium-iron Phosphate Battery Based on Step-discharge Current Response. , 2018, , .		2
90	A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A3748-A3765.	1.3	98

#	Article	IF	Citations
91	Parameter Identification Method for Fractional-order Model of Lithium-ion Battery. , 2018, , .		2
92	Internal short circuit detection method for battery pack based on circuit topology. Science China Technological Sciences, 2018, 61, 1502-1511.	2.0	28
93	Testing Lithium-Ion Battery with the Internal Reference Electrode: An Insight into the Blocking Effect. Journal of the Electrochemical Society, 2018, 165, A3240-A3248.	1.3	27
94	Incremental Capacity Analysis on Commercial Lithium-Ion Batteries Using Support Vector Regression: A Parametric Study. Energies, 2018, 11, 2323.	1.6	33
95	Investigation of Lithium Plating-Stripping Process in Li-lon Batteries at Low Temperature Using an Electrochemical Model. Journal of the Electrochemical Society, 2018, 165, A2167-A2178.	1.3	153
96	Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components. Applied Energy, 2018, 228, 633-644.	5.1	241
97	Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule, 2018, 2, 2047-2064.	11.7	442
98	Overcharge durability of Li4Ti5O12 based lithium-ion batteries at low temperature. Journal of Energy Storage, 2018, 19, 302-310.	3.9	19
99	Error Analysis of the Model-Based State-of-Charge Observer for Lithium-Ion Batteries. IEEE Transactions on Vehicular Technology, 2018, 67, 8055-8064.	3.9	36
100	Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs. Journal of Power Sources, 2018, 395, 358-368.	4.0	105
101	Signal synchronization for massive data storage in modular battery management system with controller area network. Applied Energy, 2017, 197, 52-62.	5.1	24
102	A Simulation Study on Parameter Variation Effects in Battery Packs for Electric Vehicles. Energy Procedia, 2017, 105, 4470-4475.	1.8	12
103	Degradation Identification of Individual Components in the Li y Ni 1/3 Co 1/3 Mn 1/3 O 2 -Li y Mn 2 O 4 Blended Cathode for Large Format Lithium Ion Battery. Energy Procedia, 2017, 105, 2698-2704.	1.8	6
104	Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model. Applied Energy, 2017, 204, 1240-1250.	5.1	106
105	Internal Short Circuit Trigger Method for Lithium-Ion Battery Based on Shape Memory Alloy. Journal of the Electrochemical Society, 2017, 164, A3038-A3044.	1.3	64
106	An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery. Journal of Power Sources, 2017, 364, 328-340.	4.0	294
107	A study on parameter variation effects on battery packs for electric vehicles. Journal of Power Sources, 2017, 364, 242-252.	4.0	136
108	Fusing Phenomenon of Lithium-Ion Battery Internal Short Circuit. Journal of the Electrochemical Society, 2017, 164, A2738-A2745.	1.3	46

#	Article	IF	CITATIONS
109	Preliminary Study on the Mechanism of Lithium Ion Battery Pack under Water Immersion. ECS Transactions, 2017, 77, 209-216.	0.3	21
110	Battery Internal Short Circuit Detection. ECS Transactions, 2017, 77, 217-223.	0.3	18
111	A Test Approach for Evaluating the Safety Considering Thermal Runaway Propagation within the Battery Pack. ECS Transactions, 2017, 77, 225-236.	0.3	11
112	Optimal charge current of lithium ion battery. Energy Procedia, 2017, 142, 1867-1873.	1.8	8
113	A Parameter Identification Method for Dynamics of Lithium Iron Phosphate Batteries Based on Step-Change Current Curves and Constant Current Curves. Energies, 2016, 9, 444.	1.6	14
114	State of Charge, State of Health and State of Function Co-Estimation of Lithium-lon Batteries for Electric Vehicles. , 2016, , .		9
115	Online Weld Breakage Diagnosis for the Battery of Electric Vehicle: A Data-Driven Approach. , 2016, , .		1
116	Recording frequency optimization for massive battery data storage in battery management systems. Applied Energy, 2016, 183, 380-389.	5.1	29
117	Durability comparison of four different types of high-power batteries in HEV and their degradation mechanism analysis. Applied Energy, 2016, 179, 1123-1130.	5.1	35
118	A 3D thermal runaway propagation model for a large format lithium ion battery module. Energy, 2016, 115, 194-208.	4.5	279
119	Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries. Scientific Reports, 2016, 6, 30248.	1.6	153
120	Determination of the battery pack capacity considering the estimation error using a Capacity–Quantity diagram. Applied Energy, 2016, 177, 384-392.	5.1	21
121	A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery. Applied Energy, 2016, 165, 48-59.	5.1	170
122	Thermal Runaway Propagation Within Module Consists of Large Format Li-Ion Cells. Lecture Notes in Electrical Engineering, 2016, , 117-123.	0.3	3
123	Research on Driving Range Estimation for Electric Vehicles Based on Corrected Battery Model. , 2015, ,		0
124	A modeling method for dynamic V-I characteristics of solid batteries. , 2015, , .		1
125	Understanding aging mechanisms in lithium-ion battery packs: From cell capacity loss to pack capacity evolution. Journal of Power Sources, 2015, 278, 287-295.	4.0	124
126	Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part II: Pseudo-two-dimensional model simplification and state of charge estimation. Journal of Power Sources, 2015, 278, 814-825.	4.0	172

#	Article	IF	Citations
127	Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part I: Diffusion simplification and single particle model. Journal of Power Sources, 2015, 278, 802-813.	4.0	170
128	Overcharge-induced capacity fading analysis for large format lithium-ion batteries with Li Ni1/3Co1/3Mn1/3O2+ Li Mn2O4 composite cathode. Journal of Power Sources, 2015, 279, 626-635.	4.0	197
129	Online estimation of lithium-ion battery remaining discharge capacity through differential voltage analysis. Journal of Power Sources, 2015, 274, 971-989.	4.0	63
130	Study on the correlation between state of charge and coulombic efficiency for commercial lithium ion batteries. Journal of Power Sources, 2015, 289, 81-90.	4.0	45
131	A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications. Applied Energy, 2015, 149, 297-314.	5.1	87
132	Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNi Co Mn O2 large format lithium ion battery. Applied Energy, 2015, 154, 74-91.	5.1	293
133	Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles. Journal of Power Sources, 2015, 286, 309-320.	4.0	246
134	Internal short circuit detection for battery pack using equivalent parameter and consistency method. Journal of Power Sources, 2015, 294, 272-283.	4.0	191
135	Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. Journal of Power Sources, 2015, 275, 261-273.	4.0	372
136	A comparative study of equivalent circuit models and enhanced equivalent circuit models of lithium-ion batteries with different model structures. , 2014 , , .		9
137	A battery modeling method based on percentage of discharge (POD). , 2014, , .		0
138	Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles. Energies, 2014, 7, 4895-4909.	1.6	107
139	Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. Journal of Thermal Analysis and Calorimetry, 2014, 116, 1001-1010.	2.0	180
140	Optimal decentralized valley-filling charging strategy for electric vehicles. Energy Conversion and Management, 2014, 78, 537-550.	4.4	126
141	A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. Journal of Power Sources, 2014, 251, 38-54.	4.0	554
142	Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles. Applied Energy, 2014, 135, 212-224.	5.1	275
143	Enhancing the estimation accuracy in low state-of-charge area: A novel onboard battery model through surface state of charge determination. Journal of Power Sources, 2014, 270, 221-237.	4.0	95
144	Characterization of large format lithium ion battery exposed to extremely high temperature. Journal of Power Sources, 2014, 272, 457-467.	4.0	142

#	Article	IF	Citations
145	On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 1. Equalization based on remaining charging capacity estimation. Journal of Power Sources, 2014, 247, 676-686.	4.0	104
146	Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. Journal of Power Sources, 2014, 255, 294-301.	4.0	591
147	On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 2. Fuzzy logic equalization. Journal of Power Sources, 2014, 247, 460-466.	4.0	53
148	A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation. Journal of Power Sources, 2014, 268, 658-669.	4.0	220
149	Application of Pontryagin's Minimal Principle to the energy management strategy of plugin fuel cell electric vehicles. International Journal of Hydrogen Energy, 2013, 38, 10104-10115.	3.8	150
150	Thermal Modeling of a LiFePO ₄ /Graphite Battery and Research on the Influence of Battery Temperature Rise on EV Driving Range Estimation., 2013,,.		1
151	Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles. Journal of Power Sources, 2013, 223, 136-146.	4.0	146
152	A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013, 226, 272-288.	4.0	3,691
153	LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation. Journal of Power Sources, 2013, 226, 33-41.	4.0	155
154	Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model. Applied Energy, 2013, 111, 571-580.	5.1	158
155	Using probability density function to evaluate the state of health ofÂlithium-ion batteries. Journal of Power Sources, 2013, 232, 209-218.	4.0	169
156	Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost. Applied Energy, 2013, 103, 477-487.	5.1	111
157	Research on simplification of simulating the heat conduction in the lithium-ion battery core. , $2013, \ldots$		4
158	Research on Simplification of Simulating the Heat Conduction in the Lithium-ion Battery Core. World Electric Vehicle Journal, 2013, 6, 611-622.	1.6	0
159	Simulation research of energy management strategy for range extended electric bus. , 2012, , .		3
160	Research on a battery test profile based on road test data from hybrid fuel cell buses. Journal of Power Sources, 2012, 209, 30-39.	4.0	13
161	Dynamic control for low cost auxiliary power unit of electric bus. , 2011, , .		0
162	Modeling the capacity degradation of LiFePO4/graphite batteries based on stress coupling analysis. Journal of Power Sources, 2011, 196, 9757-9766.	4.0	83

#	Article	IF	CITATIONS
163	Proton exchange membrane fuel cell system diagnosis based on the multivariate statistical method. International Journal of Hydrogen Energy, 2011, 36, 9896-9905.	3.8	56
164	Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method. Journal of Power Sources, 2011, 196, 5881-5888.	4.0	15
165	Pattern matching and simulation research of extended range electric vehicle. , 2011, , .		2
166	Online management of lithium-ion battery based on time-triggered controller area network for fuel-cell hybrid vehicle applications. Journal of Power Sources, 2010, 195, 3338-3343.	4.0	40
167	Characterization, Analysis and Modeling of an Ultracapacitor. World Electric Vehicle Journal, 2010, 4, 358-369.	1.6	19
168	Theoretical Performance of a New Kind of Range Extended Electric Vehicle. World Electric Vehicle Journal, 2010, 4, 655-661.	1.6	3
169	Modeling and control of air system for PEMFC system. , 2009, , .		1
170	A semi-empirical voltage degradation model for a low-pressure proton exchange membrane fuel cell stack under bus city driving cycles. Journal of Power Sources, 2007, 164, 306-314.	4.0	54
171	Performance modeling for low pressure vehicle proton exchange membrane fuel cell stack. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2007, 43, 110.	0.7	3
172	Performance comparison of two fuel cell hybrid buses with different powertrain and energy management strategies. Journal of Power Sources, 2006, 163, 467-479.	4.0	60
173	Hydrogen pressure drop characteristics in a fuel cell stack. International Journal of Hydrogen Energy, 2006, 31, 371-377.	3.8	46
174	Real-Time Vehicle System Controller Design for a Hybrid Fuel Cell Bus. , 2005, , 1011.		0
175	ENERGY MANAGEMENT STRATEGIES FOR FUEL CELL HYBRID ELECTRIC VEHICLE. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2005, 41, 8.	0.7	2
176	A Control Strategy for Fuel Cell Hybrid City Bus. Journal of Asian Electric Vehicles, 2004, 2, 521-525.	0.4	1
177	Predicting the Battery Residual Usable Energy under Dynamic Conditions: a Novel Adaptive Method with Enhanced Performance. , 0, , .		0