
Yan-Mei Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9644926/publications.pdf

Version: 2024-02-01

YAN-MEI SHI

#	Article	IF	CITATIONS
1	Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45, 1529-1541.	38.1	2,664
2	Metallic WO ₂ –Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 6983-6986.	13.7	470
3	Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chemical Communications, 2013, 49, 6656.	4.1	439
4	Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy, 2016, 24, 103-110.	16.0	377
5	Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chemical Communications, 2013, 49, 9803.	4.1	303
6	Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications. Energy and Environmental Science, 2020, 13, 4564-4582.	30.8	268
7	Unveiling the Promotion of Surfaceâ€Adsorbed Chalcogenate on the Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 22470-22474.	13.8	257
8	Unveiling the In Situ Dissolution and Polymerization of Mo in Ni ₄ Mo Alloy for Promoting the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 7051-7055.	13.8	228
9	Engineering Sulfur Defects, Atomic Thickness, and Porous Structures into Cobalt Sulfide Nanosheets for Efficient Electrocatalytic Alkaline Hydrogen Evolution. ACS Catalysis, 2018, 8, 8077-8083.	11.2	219
10	Ni ₂ P Nanosheets/Ni Foam Composite Electrode for Long-Lived and pH-Tolerable Electrochemical Hydrogen Generation. ACS Applied Materials & Interfaces, 2015, 7, 2376-2384.	8.0	216
11	Synergetic Transformation of Solid Inorganic–Organic Hybrids into Advanced Nanomaterials for Catalytic Water Splitting. Accounts of Chemical Research, 2018, 51, 1711-1721.	15.6	196
12	Selfâ€Templateâ€Directed Synthesis of Porous Perovskite Nanowires at Room Temperature for Highâ€Performance Visibleâ€Light Photodetectors. Angewandte Chemie - International Edition, 2015, 54, 5693-5696.	13.8	192
13	In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angewandte Chemie - International Edition, 2019, 58, 3769-3773.	13.8	188
14	Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Research, 2018, 11, 603-613.	10.4	152
15	Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nature Communications, 2020, 11, 3415.	12.8	121
16	Boosting Photoelectrochemical Water Oxidation Activity and Stability of Mo-Doped BiVO ₄ through the Uniform Assembly Coating of NiFe–Phenolic Networks. ACS Energy Letters, 2018, 3, 1648-1654.	17.4	116
17	In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: a highly efficient electrocatalyst towards water oxidation. Science China Materials, 2017, 60, 324-334.	6.3	107
18	Unveiling in situ evolved In/In2O3â^' heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate. Science Bulletin, 2020, 65, 1547-1554.	9.0	105

Yan-Mei Shi

#	Article	IF	CITATIONS
19	Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Letters, 2022, 7, 284-291.	17.4	105
20	Amorphous nanomaterials in electrocatalytic water splitting. Chinese Journal of Catalysis, 2021, 42, 1287-1296.	14.0	92
21	Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nature Communications, 2021, 12, 3881.	12.8	77
22	Self-Floating Carbonized Tissue Membrane Derived from Commercial Facial Tissue for Highly Efficient Solar Steam Generation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2911-2915.	6.7	76
23	Unveiling the Activity Origin of Iron Nitride as Catalytic Material for Efficient Hydrogenation of CO ₂ to C ₂₊ Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 4496-4500.	13.8	67
24	Electrocatalytic Reduction of CO ₂ to Ethanol at Close to Theoretical Potential via Engineering Abundant Electronâ€Donating Cu ^{<i>δ</i>+} Species. Angewandte Chemie - International Edition, 2022, 61, .	13.8	64
25	Design of continuous built-in band bending in self-supported CdS nanorod-based hierarchical architecture for efficient photoelectrochemical hydrogen production. Nano Energy, 2018, 43, 236-243.	16.0	58
26	N-doped graphene wrapped hexagonal metallic cobalt hierarchical nanosheet as a highly efficient water oxidation electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 8897-8902.	10.3	50
27	Adjusting the electronic structure by Ni incorporation: a generalized in situ electrochemical strategy to enhance water oxidation activity of oxyhydroxides. Journal of Materials Chemistry A, 2017, 5, 13336-13340.	10.3	49
28	Selectivity Origin of Organic Electrosynthesis Controlled by Electrode Materials: A Case Study on Pinacols. ACS Catalysis, 2021, 11, 8958-8967.	11.2	45
29	Dissolution of the Heteroatom Dopants and Formation of Ortho-Quinone Moieties in the Doped Carbon Materials during Water Electrooxidation. Journal of the American Chemical Society, 2022, 144, 3250-3258.	13.7	45
30	Electrosynthesis of Syngas via the Co-Reduction of CO2 and H2O. Cell Reports Physical Science, 2020, 1, 100237.	5.6	42
31	Temperature-regulated reversible transformation of spinel-to-oxyhydroxide active species for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2020, 8, 1631-1635.	10.3	33
32	Unveiling the Promotion of Surfaceâ€Adsorbed Chalcogenate on the Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 22656-22660.	2.0	32
33	Engineering transition metal phosphide nanomaterials as highly active electrocatalysts for water splitting. Dalton Transactions, 2017, 46, 16770-16773.	3.3	28
34	Hollow cobalt sulfide nanocapsules for electrocatalytic selective transfer hydrogenation of cinnamaldehyde with water. Cell Reports Physical Science, 2021, 2, 100337.	5.6	24
35	In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angewandte Chemie, 2019, 131, 3809-3813.	2.0	22
36	Self-assembled synthesis of hierarchical Zn ₂ GeO ₄ core–shell microspheres with enhanced photocatalytic activity. Dalton Transactions, 2015, 44, 75-82.	3.3	21

Yan-Mei Shi

#	Article	IF	CITATIONS
37	Membrane-free selective oxidation of thioethers with water over a nickel phosphide nanocube electrode. Cell Reports Physical Science, 2021, 2, 100462.	5.6	18
38	Boosting ethanol electrooxidation <i>via</i> photothermal effect over palladium/reduced graphene oxide. Journal of Materials Chemistry A, 2018, 6, 18426-18429.	10.3	16
39	Plasma-regulated N-doped carbon nanotube arrays for efficient electrosynthesis of syngas with a wide CO/H2 ratio. Science China Materials, 2020, 63, 2351-2357.	6.3	15
40	In situ structural reconstruction of NiMo alloy as a versatile organic oxidation electrode for boosting hydrogen production. Rare Metals, 2022, 41, 836-843.	7.1	15
41	Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite. Nano Research, 2022, 15, 10134-10141.	10.4	15
42	Unveiling the In Situ Dissolution and Polymerization of Mo in Ni 4 Mo Alloy for Promoting the Hydrogen Evolution Reaction. Angewandte Chemie, 2021, 133, 7127-7131.	2.0	12
43	Electrocatalytic Reduction of CO ₂ to Ethanol at Close to Theoretical Potential via Engineering Abundant Electronâ€Đonating Cu ^{<i>δ</i>+} Species. Angewandte Chemie, 2022, 134,	2.0	12
44	Diethylenetriamine-assisted hydrothermal synthesis of dodecahedral α-Fe ₂ O ₃ nanocrystals with enhanced and stable photoelectrochemical activity. CrystEngComm, 2015, 17, 27-31.	2.6	11
45	Unveiling the Activity Origin of Iron Nitride as Catalytic Material for Efficient Hydrogenation of CO ₂ to C ₂₊ Hydrocarbons. Angewandte Chemie, 2021, 133, 4546-4550.	2.0	11
46	Solid‧tate Conversion Synthesis of Advanced Electrocatalysts for Water Splitting. Chemistry - A European Journal, 2020, 26, 3961-3972.	3.3	8
47	Identifying the high activity of the basal plane in 1T′-phase MoS ₂ towards electrochemical hydrogen evolution. Inorganic Chemistry Frontiers, 2018, 5, 1490-1492.	6.0	6