Chunming Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9644871/publications.pdf

Version: 2024-02-01

567281 752698 21 811 15 20 citations h-index g-index papers 21 21 21 538 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Tailoring Competitive Adsorption Sites by Oxygenâ€Vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass. Advanced Materials, 2022, 34, e2107185.	21.0	162
2	Defect Engineering on CeO ₂ â€Based Catalysts for Heterogeneous Catalytic Applications. Small Structures, 2021, 2, 2100058.	12.0	94
3	Refining d-band center in Ni0.85Se by Mo doping: A strategy for boosting hydrogen generation via coupling electrocatalytic oxidation 5-hydroxymethylfurfural. Chemical Engineering Journal, 2021, 422, 130125.	12.7	89
4	Photocatalytic performance and mechanism insights of a S-scheme g-C ₃ N ₄ /Bi ₂ MoO ₆ heterostructure in phenol degradation and hydrogen evolution reactions under visible light. Physical Chemistry Chemical Physics, 2020, 22, 26278-26288.	2.8	55
5	Large-scale synthetic Mo@(2H-1T)-MoSe2 monolithic electrode for efficient hydrogen evolution in all pH scale ranges and seawater. Applied Catalysis B: Environmental, 2022, 304, 120993.	20.2	54
6	Interfacial interaction between NiMoP and NiFe-LDH to regulate the electronic structure toward high-efficiency electrocatalytic oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 9230-9238.	7.1	48
7	Two-step hydrothermal synthesis of novel hierarchical Co 3 O 4 /Bi 2 O 2 CO 3 p - n heterojunction composite photocatalyst with enhanced visible light photocatalytic activity. Applied Surface Science, 2017, 400, 365-374.	6.1	39
8	Interface engineering of NiV-LDH@FeOOH heterostructures as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions. Chemical Communications, 2020, 56, 9360-9363.	4.1	39
9	Recent Progress and Prospective of Nickel Selenide-Based Electrocatalysts for Water Splitting. Energy & Energy	5.1	32
10	Nanoarchitectonics of CdS/ZnSnO3 heterostructures for Z-Scheme mediated directional transfer of photo-generated charges with enhanced photocatalytic performance. International Journal of Hydrogen Energy, 2022, 47, 9566-9578.	7.1	28
11	Advanced Cathode Electrocatalysts for Fuel Cells: Understanding, Construction, and Application of Carbon-Based and Platinum-Based Nanomaterials., 2021, 3, 1610-1634.		26
12	Surface oxygen vacancy induced solar light activity enhancement of a CdWO ₄ /Bi ₂ O ₂ CO ₃ core–shell heterostructure photocatalyst. Physical Chemistry Chemical Physics, 2017, 19, 14431-14441.	2.8	24
13	3D Metallic Ti@Ni _{0.85} Se with Triple Hierarchy as Highâ€Efficiency Electrocatalyst for Overall Water Splitting. ChemSusChem, 2019, 12, 2271-2277.	6.8	22
14	Surfactant assisted synthesis of the YVO4:Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 502, 139-146.	4.7	21
15	Electronic and structural engineering of NiCo2O4/Ti electrocatalysts for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 10259-10267.	7.1	20
16	Controlled formation of a flower-like CdWO ₄ â€"BiOClâ€"Bi ₂ WO ₆ ternary hybrid photocatalyst with enhanced photocatalytic activity through one-pot hydrothermal reaction. New Journal of Chemistry, 2018, 42, 9236-9243.	2.8	16
17	Synergistic mechanism of Ni(OH)2/NiMoS heterostructure electrocatalyst with crystalline/amorphous interfaces for efficient hydrogen evolution over all pH ranges. Journal of Colloid and Interface Science, 2022, 606, 1004-1013.	9.4	15
18	In-Situ Construction of 2D/2D CuCo2S4/Bi2WO6 contact heterojunction as a visible-light-driven fenton-like catalyst with highly efficient charge transfer for highly efficient degradation of tetracycline hydrochloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127965.	4.7	14

#	Article	IF	CITATIONS
19	Synergism of carbon quantum dots and Au nanoparticles with Bi ₂ MoO ₆ for activity enhanced photocatalytic oxidative degradation of phenol. RSC Advances, 2021, 11, 28674-28684.	3.6	6
20	Size and morphology-controlled synthesis of vernier yttrium oxyfluoride towards enhanced photoluminescence and white light emission. New Journal of Chemistry, 2018, 42, 11351-11357.	2.8	4
21	Mechanical and nonlinear optical properties of two-dimensional LiXY2 (X=Al, Ga, In; Y S, Se, Te) monolayers. Physica B: Condensed Matter, 2022, 626, 413531.	2.7	3