Ying Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9644504/publications.pdf

Version: 2024-02-01

304743 434195 2,211 30 22 31 citations h-index g-index papers 31 31 31 2090 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel formulations of metal-organic frameworks for controlled drug delivery. Expert Opinion on Drug Delivery, 2022, 19, 1183-1202.	5.0	24
2	Current status and prospects of metal–organic frameworks for bone therapy and bone repair. Journal of Materials Chemistry B, 2022, 10, 5105-5128.	5. 8	111
3	Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New Journal of Chemistry, 2022, 46, 13818-13837.	2.8	61
4	Self-adjusted bimetallic zeolitic-imidazolate framework-derived hierarchical magnetic carbon composites as efficient adsorbent for optimizing drug contaminant removal. Chemosphere, 2021, 263, 128101.	8.2	50
5	A multifunctional aminated UiO-67 metal-organic framework for enhancing antitumor cytotoxicity through bimodal drug delivery. Chemical Engineering Journal, 2021, 412, 127899.	12.7	86
6	Recent developments on MOF-based platforms for antibacterial therapy. RSC Medicinal Chemistry, 2021, 12, 915-928.	3.9	52
7	Recent advances in cell membrane coated metal–organic frameworks (MOFs) for tumor therapy. Journal of Materials Chemistry B, 2021, 9, 4459-4474.	5.8	115
8	Four structural diversity MOF-photocatalysts readily prepared for the degradation of the methyl violet dye under UV-visible light. New Journal of Chemistry, 2021, 45, 551-560.	2.8	26
9	Recent Advances in Fe-MOF Compositions for Biomedical Applications. Current Medicinal Chemistry, 2021, 28, 6179-6198.	2.4	31
10	Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coordination Chemistry Reviews, 2021, 445, 214074.	18.8	179
11	A new magnetic adsorbent of eggshell-zeolitic imidazolate framework for highly efficient removal of norfloxacin. Dalton Transactions, 2021, 50, 18016-18026.	3.3	77
12	Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coordination Chemistry Reviews, 2020, 406, 213145.	18.8	366
13	A porous Cu(II)-based metal-organic framework carrier for pH-controlled anticancer drug delivery. Inorganic Chemistry Communication, 2020, 111, 107675.	3.9	43
14	A sheet-like MOF-derived phosphorus-doped porous carbons for supercapacitor electrode materials. Inorganic Chemistry Communication, 2020, 119, 108141.	3.9	20
15	Series of coordination polymers with multifunctional properties for nitroaromatic compounds and Cull sensing. Journal of Solid State Chemistry, 2020, 288, 121381.	2.9	13
16	A versatile and multifunctional metal–organic framework nanocomposite toward chemo-photodynamic therapy. Dalton Transactions, 2020, 49, 5291-5301.	3.3	67
17	From ZIF nanoparticles to hierarchically porous carbon: toward very high surface area and high-performance supercapacitor electrode materials. Inorganic Chemistry Frontiers, 2019, 6, 32-39.	6.0	14
18	Photocatalytic and Ferric Ion Sensing Properties of a New Three-Dimensional Metal–Organic Framework Based on Cuboctahedral Secondary Building Units. ACS Omega, 2019, 4, 10775-10783.	3.5	78

#	Article	IF	CITATIONS
19	A new Zn(<scp>ii</scp>)-based 3D metal–organic framework with uncommon sev topology and its photocatalytic properties for the degradation of organic dyes. CrystEngComm, 2019, 21, 4578-4585.	2.6	119
20	Recent developments on zinc(<scp>ii</scp>) metal–organic framework nanocarriers for physiological pH-responsive drug delivery. MedChemComm, 2019, 10, 2038-2051.	3.4	41
21	Design of Metal-Organic Frameworks for pH-Responsive Drug Delivery Application. Mini-Reviews in Medicinal Chemistry, 2019, 19, 1644-1665.	2.4	15
22	Fabrication of 3D heteroatom-doped porous carbons from self-assembly of chelate foams <i>via</i> solid state method. Inorganic Chemistry Frontiers, 2018, 5, 656-664.	6.0	13
23	Facile Conversion of Radish to Nitrogenâ€Doped Mesoporous Carbon as Effective Metalâ€Free Oxygen Reduction Electrocatalysts. ChemNanoMat, 2018, 4, 954-963.	2.8	15
24	Synthesis and application of a MOF-derived Ni@C catalyst by the guidance from an in situ hot stage in TEM. RSC Advances, 2017, 7, 26377-26383.	3.6	27
25	Cation exchanged MOF-derived nitrogen-doped porous carbons for CO ₂ capture and supercapacitor electrode materials. Journal of Materials Chemistry A, 2017, 5, 9544-9552.	10.3	149
26	Simple coordination complex-derived Ni NP anchored N-doped porous carbons with high performance for reduction of nitroarenes. CrystEngComm, 2017, 19, 6612-6619.	2.6	17
27	ZIF-derived in situ nitrogen decorated porous carbons for CO ₂ capture. Inorganic Chemistry Frontiers, 2016, 3, 1112-1118.	6.0	51
28	Two new cadmium metal-organic frameworks based on a mixed-donor ligand. Chemical Research in Chinese Universities, 2016, 32, 539-544.	2.6	3
29	Porous ZnCo ₂ O ₄ nanoparticles derived from a new mixed-metal organic framework for supercapacitors. Inorganic Chemistry Frontiers, 2015, 2, 177-183.	6.0	130
30	Rational design and synthesis of Ni _x Co _{3â^'x} O ₄ nanoparticles derived from multivariate MOF-74 for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 20145-20152.	10.3	214