
Ying Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9644504/publications.pdf Version: 2024-02-01

YING PAN

#	Article	IF	CITATIONS
1	Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coordination Chemistry Reviews, 2020, 406, 213145.	18.8	366
2	Rational design and synthesis of Ni _x Co _{3â^'x} O ₄ nanoparticles derived from multivariate MOF-74 for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 20145-20152.	10.3	214
3	Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coordination Chemistry Reviews, 2021, 445, 214074.	18.8	179
4	Cation exchanged MOF-derived nitrogen-doped porous carbons for CO ₂ capture and supercapacitor electrode materials. Journal of Materials Chemistry A, 2017, 5, 9544-9552.	10.3	149
5	Porous ZnCo ₂ O ₄ nanoparticles derived from a new mixed-metal organic framework for supercapacitors. Inorganic Chemistry Frontiers, 2015, 2, 177-183.	6.0	130
6	A new Zn(<scp>ii</scp>)-based 3D metal–organic framework with uncommon sev topology and its photocatalytic properties for the degradation of organic dyes. CrystEngComm, 2019, 21, 4578-4585.	2.6	119
7	Recent advances in cell membrane coated metal–organic frameworks (MOFs) for tumor therapy. Journal of Materials Chemistry B, 2021, 9, 4459-4474.	5.8	115
8	Current status and prospects of metal–organic frameworks for bone therapy and bone repair. Journal of Materials Chemistry B, 2022, 10, 5105-5128.	5.8	111
9	A multifunctional aminated UiO-67 metal-organic framework for enhancing antitumor cytotoxicity through bimodal drug delivery. Chemical Engineering Journal, 2021, 412, 127899.	12.7	86
10	Photocatalytic and Ferric Ion Sensing Properties of a New Three-Dimensional Metal–Organic Framework Based on Cuboctahedral Secondary Building Units. ACS Omega, 2019, 4, 10775-10783.	3.5	78
11	A new magnetic adsorbent of eggshell-zeolitic imidazolate framework for highly efficient removal of norfloxacin. Dalton Transactions, 2021, 50, 18016-18026.	3.3	77
12	A versatile and multifunctional metal–organic framework nanocomposite toward chemo-photodynamic therapy. Dalton Transactions, 2020, 49, 5291-5301.	3.3	67
13	Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New Journal of Chemistry, 2022, 46, 13818-13837.	2.8	61
14	Recent developments on MOF-based platforms for antibacterial therapy. RSC Medicinal Chemistry, 2021, 12, 915-928.	3.9	52
15	ZIF-derived in situ nitrogen decorated porous carbons for CO ₂ capture. Inorganic Chemistry Frontiers, 2016, 3, 1112-1118.	6.0	51
16	Self-adjusted bimetallic zeolitic-imidazolate framework-derived hierarchical magnetic carbon composites as efficient adsorbent for optimizing drug contaminant removal. Chemosphere, 2021, 263, 128101.	8.2	50
17	A porous Cu(II)-based metal-organic framework carrier for pH-controlled anticancer drug delivery. Inorganic Chemistry Communication, 2020, 111, 107675.	3.9	43
18	Recent developments on zinc(<scp>ii</scp>) metal–organic framework nanocarriers for physiological pH-responsive drug delivery. MedChemComm, 2019, 10, 2038-2051.	3.4	41

Ying Pan

#	Article	IF	CITATIONS
19	Recent Advances in Fe-MOF Compositions for Biomedical Applications. Current Medicinal Chemistry, 2021, 28, 6179-6198.	2.4	31
20	Synthesis and application of a MOF-derived Ni@C catalyst by the guidance from an in situ hot stage in TEM. RSC Advances, 2017, 7, 26377-26383.	3.6	27
21	Four structural diversity MOF-photocatalysts readily prepared for the degradation of the methyl violet dye under UV-visible light. New Journal of Chemistry, 2021, 45, 551-560.	2.8	26
22	Novel formulations of metal-organic frameworks for controlled drug delivery. Expert Opinion on Drug Delivery, 2022, 19, 1183-1202.	5.0	24
23	A sheet-like MOF-derived phosphorus-doped porous carbons for supercapacitor electrode materials. Inorganic Chemistry Communication, 2020, 119, 108141.	3.9	20
24	Simple coordination complex-derived Ni NP anchored N-doped porous carbons with high performance for reduction of nitroarenes. CrystEngComm, 2017, 19, 6612-6619.	2.6	17
25	Facile Conversion of Radish to Nitrogenâ€Doped Mesoporous Carbon as Effective Metalâ€Free Oxygen Reduction Electrocatalysts. ChemNanoMat, 2018, 4, 954-963.	2.8	15
26	Design of Metal-Organic Frameworks for pH-Responsive Drug Delivery Application. Mini-Reviews in Medicinal Chemistry, 2019, 19, 1644-1665.	2.4	15
27	From ZIF nanoparticles to hierarchically porous carbon: toward very high surface area and high-performance supercapacitor electrode materials. Inorganic Chemistry Frontiers, 2019, 6, 32-39.	6.0	14
28	Fabrication of 3D heteroatom-doped porous carbons from self-assembly of chelate foams <i>via</i> a solid state method. Inorganic Chemistry Frontiers, 2018, 5, 656-664.	6.0	13
29	Series of coordination polymers with multifunctional properties for nitroaromatic compounds and Cull sensing. Journal of Solid State Chemistry, 2020, 288, 121381.	2.9	13
30	Two new cadmium metal-organic frameworks based on a mixed-donor ligand. Chemical Research in Chinese Universities, 2016, 32, 539-544.	2.6	3