

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9644395/publications.pdf

Version: 2024-02-01

\\/FLLL

#	Article	IF	CITATIONS
1	A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy and Environmental Science, 2015, 8, 2916-2921.	15.6	535
2	A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Materials, 2018, 15, 14-21.	9.5	402
3	Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 22059-22066.	4.0	226
4	An Ultrastable Presodiated Titanium Disulfide Anode for Aqueous "Rockingâ€Chair―Zinc Ion Battery. Advanced Energy Materials, 2019, 9, 1900993.	10.2	178
5	Highâ€Performance Manganese Hexacyanoferrate with Cubic Structure as Superior Cathode Material for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1908754.	7.8	126
6	Tailoring 2D Heteroatomâ€Đoped Carbon Nanosheets with Dominated Pseudocapacitive Behaviors Enabling Fast and Highâ€Performance Sodium Storage. Advanced Functional Materials, 2020, 30, 1909907.	7.8	93
7	Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode. Journal of Materials Chemistry A, 2019, 7, 10239-10245.	5.2	91
8	A Low Cost Aqueous Zn–S Battery Realizing Ultrahigh Energy Density. Advanced Science, 2020, 7, 2000761.	5.6	86
9	A high energy efficiency and long life aqueous Zn–I ₂ battery. Journal of Materials Chemistry A, 2020, 8, 3785-3794.	5.2	82
10	A sulfonated polyaniline with high density and high rate Na-storage performances as a flexible organic cathode for sodium ion batteries. Chemical Communications, 2015, 51, 14354-14356.	2.2	80
11	Carbon-coated Sb 2 Se 3 composite as anode material for sodium ion batteries. Electrochemistry Communications, 2015, 60, 74-77.	2.3	69
12	Facile Tailoring of Multidimensional Nanostructured Sb for Sodium Storage Applications. ACS Nano, 2019, 13, 9533-9540.	7.3	62
13	A two-dimensional hybrid of SbO _x nanoplates encapsulated by carbon flakes as a high performance sodium storage anode. Journal of Materials Chemistry A, 2017, 5, 1160-1167.	5.2	47
14	Carbon-coated Mo3Sb7 composite as anode material for sodium ion batteries with long cycle life. Journal of Power Sources, 2016, 307, 173-180.	4.0	46
15	An <i>in Situ</i> Prepared Covalent Sulfur–Carbon Composite Electrode for High-Performance Room-Temperature Sodium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 1307-1315.	8.8	46
16	Investigation of alkali-ion (Li, Na and K) intercalation in manganese hexacyanoferrate KxMnFe(CN)6 as cathode material. Chemical Engineering Journal, 2020, 396, 125269.	6.6	44
17	Synergistic Effect between S and Se Enhancing the Electrochemical Behavior of Se <i>_x</i> S <i>_y</i> in Aqueous Zn Metal Batteries. Advanced Functional Materials, 2021, 31, 2101237.	7.8	44
18	Direct recovery of degraded LiCoO2 cathode material from spent lithium-ion batteries: Efficient impurity removal toward practical applications. Waste Management, 2021, 129, 85-94.	3.7	38

Wei Li

#	Article	IF	CITATIONS
19	Electrochemically Activated Cu _{2–} <i>_x</i> Te as an Ultraflat Discharge Plateau, Low Reaction Potential, and Stable Anode Material for Aqueous Znâ€lon Half and Full Batteries. Advanced Energy Materials, 2021, 11, 2102607.	10.2	37
20	Layered SnS2 cross-linked by carbon nanotubes as a high performance anode for sodium ion batteries. RSC Advances, 2016, 6, 35197-35202.	1.7	36
21	Electrochemical Synthesis of Multidimensional Nanostructured Silicon as a Negative Electrode Material for Lithium-Ion Battery. ACS Nano, 2022, 16, 7689-7700.	7.3	34
22	Enhanced Na ⁺ pseudocapacitance in a P, S co-doped carbon anode arising from the surface modification by sulfur and phosphorus with C–S–P coupling. Journal of Materials Chemistry A, 2020, 8, 422-432.	5.2	33
23	Observation of Structural Decomposition of Na ₃ V ₂ (PO ₄) ₃ and Na ₃ V ₂ (PO ₄) ₂ F ₃ as Cathodes for Aqueous Zn-Ion Batteries, ACS Applied Energy Materials, 2021, 4, 2797-2807.	2.5	32
24	Molten salt electrochemical synthesis of sodium titanates as high performance anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 16495-16500.	5.2	30
25	Phosphorus-doped carbon sheets decorated with SeS2 as a cathode for aqueous Zn-SeS2 battery. Chemical Engineering Journal, 2021, 420, 129920.	6.6	30
26	Issues and opportunities of manganese-based materials for enhanced Zn-ion storage performances. Journal of Energy Storage, 2022, 45, 103729.	3.9	30
27	Cu ₇ Te ₄ as an Anode Material and Zn Dendrite Inhibitor for Aqueous Znâ€ion Battery. Advanced Functional Materials, 2022, 32, .	7.8	30
28	Numerical study on the thermal management system of a liquid metal battery module. Journal of Power Sources, 2018, 392, 181-192.	4.0	23
29	Rational design of Prussian blue analogues as conversion anodes for lithium-ion batteries with high capacity and long cycle life. Journal of Alloys and Compounds, 2022, 891, 161867.	2.8	22
30	Enhanced Performance of Lead Acid Batteries with Bi ₂ O ₂ CO ₃ /Activated Carbon Additives to Negative Plates. Journal of the Electrochemical Society, 2017, 164, A1726-A1730.	1.3	21
31	The Electrochemical Synthesis of LiNbO 2 in Molten Salts and its Application for Lithium Ion Batteries with High Rate Capability. Electrochimica Acta, 2016, 189, 231-236.	2.6	19
32	Electrochemical Conversion of Silica Nanoparticles to Silicon Nanotubes in Molten Salts: Implications for High-Performance Lithium-Ion Battery Anode. ACS Applied Nano Materials, 2021, 4, 7028-7036.	2.4	19
33	Fabricating Silicon Nanotubes by Electrochemical Exfoliation and Reduction of Layer-Structured CaSiO ₃ in Molten Salt. ACS Applied Materials & Interfaces, 2021, 13, 30668-30677.	4.0	18
34	Crystal water assisting MoS2 nanoflowers for reversible zinc storage. Journal of Alloys and Compounds, 2021, 872, 159599.	2.8	18
35	Selfâ€Polymerized Disordered Carbon Enabling High Sodium Storage Performance through Expanded Interlayer Spacing by Bound Sulfur Atoms. ChemElectroChem, 2018, 5, 3206-3212.	1.7	5
36	CO ₂ â€Derived Oxygenâ€Rich Carbon with Enhanced Redox Reactions as a Cathode Material for Aqueous Znâ€Ion Batteries. ChemistrySelect, 2022, 7, .	0.7	1