Rong-Hua Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9644307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High performance asymmetric supercapacitors: New NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy, 2016, 19, 210-221.	16.0	288
2	Ru Single Atoms on N-Doped Carbon by Spatial Confinement and Ionic Substitution Strategies for High-Performance Li–O ₂ Batteries. Journal of the American Chemical Society, 2020, 142, 16776-16786.	13.7	230
3	Heat-induced formation of porous and free-standing MoS2/GS hybrid electrodes for binder-free and ultralong-life lithium ion batteries. Nano Energy, 2014, 8, 183-195.	16.0	129
4	Solvothermalâ€Induced Selfâ€Assembly of Fe ₂ O ₃ /GS Aerogels for High Liâ€Storage and Excellent Stability. Small, 2014, 10, 2260-2269.	10.0	102
5	Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Scientific Reports, 2017, 7, 44562.	3.3	76
6	Achieving high energy density in a 4.5 V all nitrogen-doped graphene based lithium-ion capacitor. Journal of Materials Chemistry A, 2019, 7, 19909-19921.	10.3	65
7	Graphene Oxide Enabled Flexible PEO-Based Solid Polymer Electrolyte for All-Solid-State Lithium Metal Battery. ACS Applied Energy Materials, 2021, 4, 3660-3669.	5.1	59
8	Self-supporting Co3O4/Graphene Hybrid Films as Binder-free Anode Materials for Lithium Ion Batteries. Scientific Reports, 2018, 8, 3182.	3.3	55
9	3D few-layered MoS2/graphene hybrid aerogels on carbon fiber papers: A free-standing electrode for high-performance lithium/sodium-ion batteries. Chemical Engineering Journal, 2020, 398, 125592.	12.7	52
10	Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles/graphene hydrogels as binder-free high-capacitance anode for supercapacitors. Rare Metals, 2021, 40, 3520-3530.	7.1	47
11	Hydroxyapatite Nanowire-Reinforced Poly(ethylene oxide)-Based Polymer Solid Electrolyte for Application in High-Temperature Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54637-54643.	8.0	45
12	Rational Design of Layered SnS2 on Ultralight Graphene Fiber Fabrics as Binder-Free Anodes for Enhanced Practical Capacity of Sodium-Ion Batteries. Nano-Micro Letters, 2019, 11, 66.	27.0	44
13	Functionalized 12µm Polyethylene Separator to Realize Dendriteâ€Free Lithium Deposition toward Highly Stable Lithiumâ€Metal Batteries. Advanced Science, 2022, 9, e2102215.	11.2	35
14	Nanocarbonâ€Based Electrocatalysts for Rechargeable Aqueous Li/Znâ€Air Batteries. ChemElectroChem, 2018, 5, 1745-1763.	3.4	34
15	Freeze-drying induced self-assembly approach for scalable constructing MoS2/graphene hybrid aerogels for lithium-ion batteries. Journal of Colloid and Interface Science, 2019, 544, 37-45.	9.4	33
16	A three-dimensional sponge of graphene nanoribbons crosslinked by Fe ₃ O ₄ nanoparticles for Li ⁺ storage. Journal of Materials Chemistry A, 2017, 5, 23592-23599.	10.3	32
17	Graphene nanosheets as backbones to build a 3D conductive network for negative active materials of lead–acid batteries. Journal of Applied Electrochemistry, 2017, 47, 619-630.	2.9	21
18	Design of Nb2O5/graphene hybrid aerogel as polymer binder-free electrodes for lithium-ion capacitors. Materials Technology, 2020, 35, 625-634.	3.0	18

Rong-Hua Wang

#	Article	IF	CITATIONS
19	Fabricating 3D Macroscopic Graphene-Based Architectures with Outstanding Flexibility by the Novel Liquid Drop/Colloid Flocculation Approach for Energy Storage Applications. ACS Applied Materials & Interfaces, 2018, 10, 21991-22001.	8.0	12
20	Engineering lithiophilic Ni-Al@LDH interlayers on a garnet-type electrolyte for solid-state lithium metal batteries. Chemical Communications, 2021, 57, 10214-10217.	4.1	7
21	Compressible Neuron-like 3D Few-Layered MoS ₂ /N-Doped Graphene Foam as Freestanding and Binder-Free Electrodes for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 7249-7259.	5.1	6
22	Electrochemical performances of graphene nanoribbons interlacing hollow NiCo oxide nanocages. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	5
23	Ultra-small MnCo2O4 nanocrystals decorated on nitrogen-enriched carbon nanofibers as oxygen cathode for Li-O2 batteries. Functional Materials Letters, 2020, 13, 2051035.	1.2	4
24	Rational Design of an FeCo ₂ O ₄ @FeCo ₂ S ₄ Heterostructure as an Efficient Bifunctional Electrocatalyst for Zn–Air Batteries. ACS Applied Energy Materials, 2022, 5, 9742-9749.	5.1	4