Huajie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9644048/publications.pdf

Version: 2024-02-01

		567281	839539
18	1,137	15	18
papers	citations	h-index	g-index
18	18	18	1146
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Amino Termination of Ti ₃ C ₂ MXene Induces its Graphene Hybridized Film with Enhanced Ordered Nanostructure and Excellent Multiperformance. Advanced Materials Interfaces, 2022, 9, .	3.7	3
2	Improved microwave absorption performance of double helical C/Co@CNT nanocomposite with hierarchical structures. Journal of Materials Chemistry C, 2021, 9, 2178-2189.	5 . 5	49
3	Probing the Energy Storage Mechanism of Quasiâ€Metallic Na in Hard Carbon for Sodiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2003854.	19.5	104
4	Sodiumâ€lon Batteries: Probing the Energy Storage Mechanism of Quasiâ€Metallic Na in Hard Carbon for Sodiumâ€lon Batteries (Adv. Energy Mater. 11/2021). Advanced Energy Materials, 2021, 11, 2170041.	19.5	2
5	Interlayer-Expanded MoS ₂ /N-Doped Carbon with Three-Dimensional Hierarchical Architecture as a Cathode Material for High-Performance Aluminum-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 7064-7072.	5.1	15
6	The introduction of amino termination on Ti3C2 MXene surface for its flexible film with excellent property. Carbon, 2021, 179, 400-407.	10.3	33
7	Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Storage Materials, 2020, 25, 903-911.	18.0	131
8	The Compensation Effect Mechanism of Fe–Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminumâ€Ion Batteries. ChemSusChem, 2020, 13, 732-740.	6.8	93
9	Developing an Interpenetrated Porous and Ultrasuperior Hard-Carbon Anode via a Promising Molten-Salt Evaporation Method. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2481-2489.	8.0	54
10	Coâ€Construction of Sulfur Vacancies and Heterojunctions in Tungsten Disulfide to Induce Fast Electronic/Ionic Diffusion Kinetics for Sodiumâ€ion Batteries. Advanced Materials, 2020, 32, e2005802.	21.0	244
11	Analysis of the Stable Interphase Responsible for the Excellent Electrochemical Performance of Graphite Electrodes in Sodiumâ€ion Batteries. Small, 2020, 16, e2003268.	10.0	75
12	Fe ionic induced strong bioinspired Fe3O4@graphene aerogel with excellent electromagnetic shielding effectiveness. Applied Surface Science, 2020, 525, 146569.	6.1	17
13	Hyperaccumulation Route to Ca-Rich Hard Carbon Materials with Cation Self-Incorporation and Interlayer Spacing Optimization for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10544-10553.	8.0	53
14	An Extremely Fast Charging Li ₃ V ₂ (PO ₄) ₃ Cathode at a 4.8 V Cutoff Voltage for Li-lon Batteries. ACS Energy Letters, 2020, 5, 1763-1770.	17.4	69
15	PY ₁₃ FSI-Infiltrated SBA-15 as Nonflammable and High Ion-Conductive Ionogel Electrolytes for Quasi-Solid-State Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 22981-22991.	8.0	34
16	Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. Journal of Energy Chemistry, 2020, 51, 72-80.	12.9	56
17	Inhibition of Crystallization of Poly(ethylene oxide) by Ionic Liquid: Insight into Plasticizing Mechanism and Application for Solid-State Sodium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43252-43260.	8.0	65
18	High-Capacity Interstitial Mn-Incorporated Mn _{<i>x</i>} Fe _{3ê€"<i>x</i>} O ₄ /Graphene Nanocomposite for Sodium-Ion Battery Anodes. ACS Applied Materials & Sodium-Ion Battery Academy Ac	8.0	40