Eddy Dib

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9643860/publications.pdf

Version: 2024-02-01

759233 610901 27 596 12 24 citations h-index g-index papers 28 28 28 514 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Silicalite-1 formation in acidic medium: Synthesis conditions and physicochemical properties. Microporous and Mesoporous Materials, 2022, 329, 111537.	4.4	14
2	The challenge of silanol species characterization in zeolites. Inorganic Chemistry Frontiers, 2022, 9, 1125-1133.	6.0	29
3	Unraveling the Effect of Silanol Defects on the Insertion of Single-Site Mo in the MFI Zeolite Framework. Inorganic Chemistry, 2022, 61, 1418-1425.	4.0	14
4	A combination of proton spin diffusion NMR and molecular simulations to probe supramolecular assemblies of organic molecules in nanoporous materials. Dalton Transactions, 2022, 51, 5434-5440.	3.3	2
5	Host–Guest Silicalite-1 Zeolites: Correlated Disorder and Phase Transition Inhibition by a Small Guest Modification. Chemistry of Materials, 2022, 34, 366-387.	6.7	5
6	Engineering RHO Nanozeolite: Controlling the Particle Morphology, Al and Cation Content, Stability, and Flexibility. ACS Applied Energy Materials, 2022, 5, 6032-6042.	5.1	11
7	Hydroxyl environments in zeolites probed by deuterium solid-state MAS NMR combined with IR spectroscopy. Inorganic Chemistry Frontiers, 2022, 9, 2964-2968.	6.0	2
8	Access to sodalite cages in ion-exchanged nanosized FAU zeolites probed by hyperpolarized 129Xe NMR and DFT calculations. Microporous and Mesoporous Materials, 2022, 338, 111965.	4.4	5
9	Acidic medium synthesis of zeolites – an avenue to control the structure-directing power of organic templates. Dalton Transactions, 2022, 51, 11499-11506.	3.3	8
10	Silanol defect engineering and healing in zeolites: opportunities to fine-tune their properties and performances. Chemical Society Reviews, 2021, 50, 11156-11179.	38.1	100
11	Control the position of framework defects in zeolites by changing the symmetry of organic structure directing agents. Microporous and Mesoporous Materials, 2021, 315, 110899.	4.4	12
12	The role of mixed alkali metal cations on the formation of nanosized CHA zeolite from colloidal precursor suspension. Journal of Colloid and Interface Science, 2021, 604, 350-357.	9.4	13
13	Complex H-bonded silanol network in zeolites revealed by IR and NMR spectroscopy combined with DFT calculations. Journal of Materials Chemistry A, 2021, 9, 27347-27352.	10.3	33
14	Zeolite Structure Direction: Identification, Strength and Involvement of Weak CHâ‹â‹â‹0 Hydrogen Bonds. ChemPhysChem, 2020, 21, 149-153.	2.1	11
15	Recrystallization on Alkaline Treated Zeolites in the Presence of Pore-Directing Agents. Crystal Growth and Design, 2018, 18, 2010-2015.	3.0	5
16	ZSM-5 Zeolite: Complete Al Bond Connectivity and Implications on Structure Formation from Solid-State NMR and Quantum Chemistry Calculations. Journal of Physical Chemistry Letters, 2018, 9, 19-24.	4.6	47
17	Intermolecular interactions in AST zeolites through ¹⁴ N NMR and DFT calculations. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 202-207.	0.5	6
18	¹¹ B MAS NMR Study of the Thermolytic Dehydrocoupling of Two Ammonia Boranes upon the Release of One Equivalent of H ₂ at Isothermal Conditions. ChemistrySelect, 2017, 2, 9396-9401.	1.5	13

EDDY DIB

#	Article	IF	Citations
19	Probing Disorder in Al-ZSM-5 Zeolites by ¹⁴ N NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 15831-15841.	3.1	14
20	One-pot synthesis of silanol-free nanosized MFIÂzeolite. Nature Materials, 2017, 16, 1010-1015.	27.5	135
21	Recent Advances in 14N Solid-State NMR. Annual Reports on NMR Spectroscopy, 2016, 87, 175-235.	1.5	18
22	14 N NMR of tetrapropylammonium based crystals. European Physical Journal: Special Topics, 2015, 224, 1769-1773.	2.6	5
23	Preferential orientations of structure directing agents in zeolites. Dalton Transactions, 2015, 44, 16680-16683.	3.3	13
24	Structure-Directing Agent Governs the Location of Silanol Defects in Zeolites. Chemistry of Materials, 2015, 27, 7577-7579.	6.7	49
25	DFT-D Study of ¹⁴ N Nuclear Quadrupolar Interactions in Tetra- <i>n</i> h-alkyl Ammonium Halide Crystals. Journal of Physical Chemistry A, 2014, 118, 3525-3533.	2.5	10
26	14N solid-state NMR: a sensitive probe of the local order in zeolites. Physical Chemistry Chemical Physics, 2013, 15, 18349.	2.8	19
27	Exploration, explanation and exploitation of hydroxyls in zeolites. National Science Review, 0, , .	9.5	3