List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/96438/publications.pdf Version: 2024-02-01

FDIC GLAMP

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Does phylogenetic relatedness influence the strength of competition among vascular plants?. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10, 41-50.	2.7	278
3	Plants Integrate Information About Nutrients and Neighbors. Science, 2010, 328, 1657-1657.	12.6	266
4	Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biology and Biochemistry, 2014, 78, 10-20.	8.8	243
5	Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, 2011, 338, 483-495.	3.7	162
6	A High Arctic soil ecosystem resists longâ€ŧerm environmental manipulations. Global Change Biology, 2011, 17, 3187-3194.	9.5	140
7	DIRECT AND INDIRECT CONTROL OF GRASSLAND COMMUNITY STRUCTURE BY LITTER, RESOURCES, AND BIOMASS. Ecology, 2008, 89, 216-225.	3.2	113
8	Shoot, but not root, competition reduces community diversity in experimental mesocosms. Journal of Ecology, 2009, 97, 155-163.	4.0	104
9	Indices for monitoring biodiversity change: Are some more effective than others?. Ecological Indicators, 2009, 9, 432-444.	6.3	97
10	When Competition Does Not Matter: Grassland Diversity and Community Composition. American Naturalist, 2008, 171, 777-787.	2.1	91
11	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	5.8	90
12	Increased competition does not lead to increased phylogenetic overdispersion in a native grassland. Ecology Letters, 2013, 16, 1168-1176.	6.4	89
13	Structural equation modeling in the plant sciences: An example using yield components in oat. Canadian Journal of Plant Science, 2011, 91, 603-619.	0.9	79
14	Water and nitrogen addition differentially impact plant competition in a native rough fescue grassland. Plant Ecology, 2007, 192, 21-33.	1.6	59
15	Smooth brome invasion increases rare soil bacterial species prevalence, bacterial species richness and evenness. Journal of Ecology, 2015, 103, 386-396.	4.0	59
16	Bryophyte-cyanobacterial associations as a key factor in N2-fixation across the Canadian Arctic. Plant and Soil, 2011, 344, 335-346.	3.7	58
17	Structural equation modeling of a winnowed soil microbiome identifies how invasive plants re-structure microbial networks. ISME Journal, 2019, 13, 1988-1996.	9.8	57
18	Archaea and bacteria mediate the effects of native species root loss on fungi during plant invasion. ISME Journal, 2017, 11, 1261-1275.	9.8	50

#	Article	IF	CITATIONS
19	Plant competitive ability and the transitivity of competitive hierarchies change with plant age. Plant Ecology, 2012, 213, 15-23.	1.6	40
20	Core and Differentially Abundant Bacterial Taxa in the Rhizosphere of Field Grown Brassica napus Genotypes: Implications for Canola Breeding. Frontiers in Microbiology, 2019, 10, 3007.	3.5	39
21	Smooth brome changes gross soil nitrogen cycling processes during invasion of a rough fescue grassland. Plant Ecology, 2015, 216, 235-246.	1.6	38
22	Patch-background contrast and patch density have limited effects on root proliferation and plant performance in Abutilon theophrasti. Functional Ecology, 2004, 18, 836-843.	3.6	37
23	Spatially explicit structural equation modeling. Ecology, 2014, 95, 2434-2442.	3.2	37
24	Temporal changes in abundance–occupancy relationships within and between communities after disturbance. Journal of Vegetation Science, 2013, 24, 607-615.	2.2	36
25	Litter accumulation drives grassland plant community composition and functional diversity via leaf traits. Plant Ecology, 2015, 216, 357-370.	1.6	35
26	Plant species traits across a riparianâ€zone/forest ecotone. Journal of Vegetation Science, 2003, 14, 853-858.	2.2	31
27	Consequences of differing competitive abilities between juvenile and adult plants. Oikos, 2006, 112, 502-512.	2.7	31
28	Nitrogen addition impacts on soil microbial stoichiometry are driven by changes in plant resource stoichiometry not by the composition of main microbial groups in an alpine meadow. Biology and Fertility of Soils, 2020, 56, 261-271.	4.3	24
29	Patterns of Cross-Continental Variation in Tree Seed Mass in the Canadian Boreal Forest. PLoS ONE, 2013, 8, e61060.	2.5	23
30	Plant communities and soil properties mediate agricultural land use impacts on arbuscular mycorrhizal fungi in the Mixed Prairie ecoregion of the North American Great Plains. Agriculture, Ecosystems and Environment, 2017, 249, 187-195.	5.3	23
31	The early impact of adjacent clearcutting and forest fire on riparian zone vegetation in northwestern Ontario. Forest Ecology and Management, 2003, 177, 529-538.	3.2	22
32	A high-throughput belowground plant diversity assay using next-generation sequencing of the trnL intron. Plant and Soil, 2016, 404, 361-372.	3.7	22
33	Checkerboard score–area relationships reveal spatial scales of plant community structure. Oikos, 2018, 127, 415-426.	2.7	21
34	Spiking regional vis-NIR calibration models with local samples to predict soil organic carbon in two High Arctic polar deserts using a vis-NIR probe. Canadian Journal of Soil Science, 2015, 95, 237-249.	1.2	20
35	Relative influence of climate, soils, and disturbance on plant species richness in northern temperate and boreal forests. Forest Ecology and Management, 2016, 381, 93-105.	3.2	18
36	Increased Soil Frost Versus Summer Drought as Drivers of Plant Biomass Responses to Reduced Precipitation: Results from a Globally Coordinated Field Experiment. Ecosystems, 2018, 21, 1432-1444.	3.4	18

#	Article	IF	CITATIONS
37	Vegetation zonation among the microhabitats in a lacustrine environment: analysis and application of belowground species trait patterns. Ecological Engineering, 2001, 18, 135-146.	3.6	17
38	Cotyledon damage affects seed number through final plant size in the annual grassland species Medicago lupulina. Annals of Botany, 2011, 107, 437-442.	2.9	16
39	Early productivity and crude protein content of establishing forage swards composed of combinations of native grass and legume species in mixed-grassland ecoregions. Canadian Journal of Plant Science, 2013, 93, 445-454.	0.9	16
40	Root system size determines plant performance following short-term soil nutrient pulses. Plant Ecology, 2012, 213, 1803-1812.	1.6	15
41	Plant belowground diversity and species segregation by depth in a semi-arid grassland. Ecoscience, 2018, 25, 1-7.	1.4	15
42	Long-Term Efficacy of Glyphosate for Smooth Brome Control in Native Prairie. Invasive Plant Science and Management, 2017, 10, 350-355.	1.1	14
43	Comparison of Grassland Phenology Derived from MODIS Satellite and PhenoCam Near-Surface Remote Sensing in North America. Canadian Journal of Remote Sensing, 2019, 45, 707-722.	2.4	14
44	A survey of invasive plants on grassland soil microbial communities and ecosystem services. Scientific Data, 2020, 7, 86.	5.3	14
45	Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca Sand Dunes in well-watered greenhouse trials. Botany, 2013, 91, 176-181.	1.0	13
46	Structural equation modeling of the Canadian flax (<i>Linum usitatissimum</i> L.) core collection for multiple phenotypic traits. Canadian Journal of Plant Science, 2014, 94, 1325-1332.	0.9	13
47	Interactions Between Root and Shoot Competition and Plant Traits. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 1110-1112.	1.0	13
48	Global pattern and associated drivers of grassland productivity sensitivity to precipitation change. Science of the Total Environment, 2022, 806, 151224.	8.0	13
49	Predicting Polycyclic Aromatic Hydrocarbon Bioavailability to Mammals from Incidentally Ingested Soils Using Partitioning and Fugacity. Environmental Science & Technology, 2016, 50, 1338-1346.	10.0	12
50	A NONLINEAR REGRESSION APPROACH TO TEST FOR SIZE-DEPENDENCE OF COMPETITIVE ABILITY. Ecology, 2006, 87, 1452-1457.	3.2	11
51	Mixtures of native perennial forage species produce higher yields than monocultures in a long-term study. Canadian Journal of Plant Science, 2018, 98, 633-647.	0.9	10
52	The Influence of Matrix Size on Statistical Properties of Co-Occurrence and Limiting Similarity Null Models. PLoS ONE, 2016, 11, e0151146.	2.5	10
53	Phenology-dependent root bacteria enhance yield of Brassica napus. Soil Biology and Biochemistry, 2022, 166, 108468.	8.8	10
54	Quantification of low-level genetically modified (GM) seed presence in large seed lots: a case study of GM seed in Canadian flax breeder seed lots. Seed Science Research. 2011, 21, 315-321.	1.7	9

#	Article	IF	CITATIONS
55	Assembling productive communities of native grass and legume species: finding the right mix. Applied Vegetation Science, 2016, 19, 111-121.	1.9	9
56	Quantifying Optimal Rates of Litter Retention to Maximize Annual Net Primary Productivity on Mixed-Grass Prairie. Rangeland Ecology and Management, 2017, 70, 219-224.	2.3	9
57	Herbicide Toxicity Testing with Non-Target Boreal Plants: The Sensitivity of Achillea millefolium L. and Chamerion angustifolium L. to Triclopyr and Imazapyr. Environmental Management, 2017, 60, 136-156.	2.7	8
58	The distribution, abundance, and environmental affinities of the endemic vascular plant taxa of the Athabasca Sand Dunes of northern Saskatchewan. Ecoscience, 2012, 19, 161-169.	1.4	6
59	<i>Salix arctica</i> changes root distribution and nutrient uptake in response to subsurface nutrients in High Arctic deserts. Ecology, 2017, 98, 2158-2169.	3.2	6
60	Longâ€ŧerm sand dune spatioâ€ŧemporal dynamics and endemic plant habitat extent in the Athabasca sand dunes of northern Saskatchewan. Remote Sensing in Ecology and Conservation, 2019, 5, 70-86.	4.3	6
61	Prescribed Burning Has Limited Long-Term Effectiveness in Controlling Trembling Aspen (Populus) Tj ETQq1 Field-Naturalist, 2013, 127, 50.	1 0.7843 0.1	14 rgBT /Ov 5
62	Linking Herbicide Dissipation to Soil Ecological Risk along Transmission Rightsâ€ofâ€Way in the Yukon Territory, Canada. Journal of Environmental Quality, 2018, 47, 1356-1364.	2.0	5
63	Environmental associations of <i>Hesperia dacotae</i> (Lepidoptera: Hesperiidae) in southeastern Saskatchewan, Canada. Canadian Entomologist, 2018, 150, 652-662.	0.8	5
64	Extent of Dakota skipper, Hesperia dacotae, distribution in Southeastern Saskatchewan, Canada. Journal of Insect Conservation, 2020, 24, 1073-1081.	1.4	5
65	An intensive multilocation temporal dataset of fungal and bacterial communities in the root and rhizosphere of Brassica napus. Data in Brief, 2020, 31, 106143.	1.0	5
66	Relationships and influence of yield components on spacedâ€plant and sward seed yield in perennial ryegrass. Grass and Forage Science, 2020, 75, 424-437.	2.9	5
67	Could Cryoturbic Diapirs Be Key for Understanding Ecological Feedbacks to Climate Change in High Arctic Polar Deserts?. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005263.	3.0	5
68	Plant responses to soil biota depend on precipitation history, plant diversity, and productivity. Ecology, 2022, 103, .	3.2	5
69	Ex-post assessment of genetically modified, low level presence in Canadian flax. Transgenic Research, 2017, 26, 399-409.	2.4	4
70	Yak Dung Deposition Affects Litter Mixing Effects on Mass Loss in Tibetan Alpine Grassland. Rangeland Ecology and Management, 2019, 72, 405-410.	2.3	4
71	Plant species traits across a riparian-zone/forest ecotone. Journal of Vegetation Science, 2003, 14, 853.	2.2	4
72	An intensive multilocation temporal dataset of fungal communities in the root and rhizosphere of Brassica napus. Data in Brief, 2020, 30, 105467.	1.0	3

#	Article	IF	CITATIONS
73	The Shoreline Fringe Forest and Adjacent Peatlands of the Southern Central British Columbia Coast. Canadian Field-Naturalist, 2003, 117, 209.	0.1	2
74	lrrigation but not <scp>N</scp> fertilization enhances seedhead density in plains rough fescue (<scp><i>F</i></scp> <i>estuca hallii</i>). Grass and Forage Science, 2013, 68, 120-124.	2.9	2
75	Modification of plant communities by bison in Riding Mountain National Park. Ecoscience, 2021, 28, 67-80.	1.4	2
76	Vegetative growth and belowground expansion from transplanted lowâ€ e rctic tundra turfs. Restoration Ecology, 2023, 31, .	2.9	2
77	Seasonal patterns of forage quality in six native forb species. Canadian Journal of Plant Science, 0, , .	0.9	1
78	The silent carbon pool: Cryoturbic enriched organic matter in Canadian High Arctic semi-deserts. Geoderma, 2022, 415, 115781.	5.1	1
79	Impact of Diverse Annual Forage Mixtures on Weed Control in a Semiarid Environment. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	0