Timothy J Snelling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9642872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nature Communications, 2018, 9, 870.	12.8	405
2	Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Frontiers in Microbiology, 2018, 9, 2161.	3.5	255
3	The ruminal microbiome associated with methane emissions from ruminant livestock. Journal of Animal Science and Biotechnology, 2017, 8, 7.	5.3	246
4	A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Science Advances, 2019, 5, eaav8391.	10.3	218
5	Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Scientific Reports, 2014, 4, 5892.	3.3	88
6	Oral Samples as Non-Invasive Proxies for Assessing the Composition of the Rumen Microbial Community. PLoS ONE, 2016, 11, e0151220.	2.5	70
7	Identification, Comparison, and Validation of Robust Rumen Microbial Biomarkers for Methane Emissions Using Diverse Bos Taurus Breeds and Basal Diets. Frontiers in Microbiology, 2017, 8, 2642.	3.5	64
8	Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism. Genetics Selection Evolution, 2017, 49, 9.	3.0	59
9	Effect of Sunflower and Marine Oils on Ruminal Microbiota, In vitro Fermentation and Digesta Fatty Acid Profile. Frontiers in Microbiology, 2017, 8, 1124.	3.5	57
10	Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Scientific Reports, 2020, 10, 1613.	3.3	55
11	Identification of Rumen Microbial Genes Involved in Pathways Linked to Appetite, Growth, and Feed Conversion Efficiency in Cattle. Frontiers in Genetics, 2019, 10, 701.	2.3	43
12	MAGpy: a reproducible pipeline for the downstream analysis of metagenome-assembled genomes (MAGs). Bioinformatics, 2019, 35, 2150-2152.	4.1	33
13	Diversity and Community Composition of Methanogenic Archaea in the Rumen of Scottish Upland Sheep Assessed by Different Methods. PLoS ONE, 2014, 9, e106491.	2.5	32
14	The rumen microbial metaproteome as revealed by SDS-PAGE. BMC Microbiology, 2017, 17, 9.	3.3	31
15	Temporal stability of the rumen microbiota in beef cattle, and response to diet and supplements. Animal Microbiome, 2019, 1, 16.	3.8	29
16	Differential recovery of bacterial and archaeal 16S rRNA genes from ruminal digesta in response to glycerol as cryoprotectant. Journal of Microbiological Methods, 2013, 95, 381-383.	1.6	21
17	Isolation of Streptococcus thoraltensis from Rabbit Faeces. Current Microbiology, 2010, 61, 357-360.	2.2	10