Peter Sandner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9642142/publications.pdf

Version: 2024-02-01

		279798	302126
52	1,671	23	39
papers	citations	h-index	g-index
F-7	F-7		1660
57	57	57	1660
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Vericiguat Improves Aortic Wave Reflection Parameters in a New Preclinical Model of Hypertension. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121008735.	3.9	2
2	Benign prostatic hyperplasia/obstruction ameliorated using a soluble guanylate cyclase activator. Journal of Pathology, 2022, 256, 442-454.	4.5	14
3	Urinary miRNA Profiles in Chronic Kidney Injury—Benefits of Extracellular Vesicle Enrichment and miRNAs as Potential Biomarkers for Renal Fibrosis, Glomerular Injury, and Endothelial Dysfunction. Toxicological Sciences, 2022, , .	3.1	2
4	The sGC stimulator BAY-747 and activator runcaciguat can enhance memory in vivo via differential hippocampal plasticity mechanisms. Scientific Reports, 2022, 12, 3589.	3.3	5
5	Discovery of the Soluble Guanylate Cyclase Activator Runcaciguat (BAY 1101042). Journal of Medicinal Chemistry, 2021, 64, 5323-5344.	6.4	38
6	Assessing the Use of the sGC Stimulator BAY-747, as a Potential Treatment for Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2021, 22, 8016.	4.1	3
7	Novel soluble guanylyl cyclase activators increase glomerular cGMP, induce vasodilation and improve blood flow in the murine kidney. British Journal of Pharmacology, 2021, , .	5.4	14
8	Riociguat for the treatment of Phe508del homozygous adults with cystic fibrosis. Journal of Cystic Fibrosis, 2021, 20, 1018-1025.	0.7	5
9	Soluble Guanylate Cyclase Stimulator Vericiguat Enhances Long-Term Memory in Rats without Altering Cerebral Blood Volume. Biomedicines, 2021, 9, 1047.	3.2	10
10	sGC stimulation lowers elevated blood pressure in a new canine model of resistant hypertension. Hypertension Research, 2021, 44, 1568-1577.	2.7	2
11	Runcaciguat, a novel soluble guanylate cyclase activator, shows renoprotection in hypertensive, diabetic, and metabolic preclinical models of chronic kidney disease. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 2363-2379.	3.0	13
12	Soluble guanylate cyclase stimulators and their potential use: a patent review. Expert Opinion on Therapeutic Patents, 2021, 31, 203-222.	5 . O	22
13	Soluble GC stimulators and activators: Past, present and future. British Journal of Pharmacology, 2021, , .	5.4	45
14	Capillary hemodynamics and contracting skeletal muscle oxygen pressures in male rats with heart failure: Impact of soluble guanylyl cyclase activator. Nitric Oxide - Biology and Chemistry, 2021, 119, 1-1.	2.7	1
15	Soluble Guanylate Cyclase Agonists Induce Bronchodilation in Human Small Airways. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 43-48.	2.9	16
16	Thermal shift assay: Strengths and weaknesses of the method to investigate the ligand-induced thermostabilization of soluble guanylyl cyclase. Journal of Pharmaceutical and Biomedical Analysis, 2020, 181, 113065.	2.8	8
17	cGMP: a unique 2nd messenger molecule – recent developments in cGMP research and development. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 287-302.	3.0	82
18	Testosterone Induces Relaxation of Human Corpus Cavernosum Tissue of Patients With Erectile Dysfunction. Sexual Medicine, 2020, 8, 114-119.	1.6	3

#	Article	IF	Citations
19	Enhanced Cardiomyocyte Function in Hypertensive Rats With Diastolic Dysfunction and Human Heart Failure Patients After Acute Treatment With Soluble Guanylyl Cyclase (sGC) Activator. Frontiers in Physiology, 2020, 11, 345.	2.8	29
20	Tyrosine 135 of the \hat{I}^21 subunit as binding site of BAY-543: Importance of the Y-x-S-x-R motif for binding and activation by sGC activator drugs. European Journal of Pharmacology, 2020, 881, 173203.	3.5	5
21	Mind the gap (junction): cGMP induced by nitric oxide in cardiac myocytes originates from cardiac fibroblasts. British Journal of Pharmacology, 2019, 176, 4696-4707.	5.4	23
22	Protein Kinase G Is Involved in Acute but Not in Long-Term Regulation of Renin Secretion. Frontiers in Pharmacology, 2019, 10, 800.	3.5	11
23	A novel soluble guanylyl cyclase activator, BR 11257, acts as a non-stabilising partial agonist of sGC. Biochemical Pharmacology, 2019, 163, 142-153.	4.4	11
24	Loss of smooth muscle CYB5R3 amplifies angiotensin II–induced hypertension by increasing sGC heme oxidation. JCl Insight, 2019, 4, .	5.0	39
25	From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators. Biological Chemistry, 2018, 399, 679-690.	2.5	62
26	Nitric Oxide–Independent Soluble Guanylate Cyclase Activation Improves Vascular Function and Cardiac Remodeling in Sickle Cell Disease. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 636-647.	2.9	25
27	Transcutaneous glomerular filtration rate measurement in a canine animal model of chronic kidney disease. Journal of Pharmacological and Toxicological Methods, 2018, 90, 7-12.	0.7	7
28	BAY 60â€"2770 activates two isoforms of nitric oxide sensitive guanylyl cyclase: Evidence for stable insertion of activator drugs. Biochemical Pharmacology, 2018, 147, 10-20.	4.4	10
29	Soluble Guanylate Cyclase Stimulators and Activators. Handbook of Experimental Pharmacology, 2018, 264, 355-394.	1.8	104
30	The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) Signaling Cascade on Kidney Health and Disease: A Preclinical Perspective. International Journal of Molecular Sciences, 2018, 19, 1712.	4.1	60
31	Discovery and development of sGC stimulators for the treatment of pulmonary hypertension and rare diseases. Nitric Oxide - Biology and Chemistry, 2018, 77, 88-95.	2.7	30
32	Nitric oxide–sensitive guanylyl cyclase stimulation improves experimental heart failure with preserved ejection fraction. JCI Insight, 2018, 3, .	5.0	27
33	Inhibition of the <scp>TGF</scp> β signalling pathway by <scp>cGMP</scp> and <scp>cGMP</scp> â€dependent kinase I in renal fibrosis. FEBS Open Bio, 2017, 7, 550-561.	2.3	27
34	Discovery of the Soluble Guanylate Cyclase Stimulator Vericiguat (BAY 1021189) for the Treatment of Chronic Heart Failure. Journal of Medicinal Chemistry, 2017, 60, 5146-5161.	6.4	133
35	NO-Sensitive Guanylate Cyclase Isoforms NO-GC1 and NO-GC2 Contribute to Noise-Induced Inner Hair Cell Synaptopathy. Molecular Pharmacology, 2017, 92, 375-388.	2.3	24
36	Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence. Respiratory Medicine, 2017, 122, S1-S9.	2.9	79

#	Article	IF	CITATIONS
37	The Potential of sGC Modulators for the Treatment of Age-Related Fibrosis: A Mini-Review. Gerontology, 2017, 63, 216-227.	2.8	29
38	Emerging strategies for treatment of systemic sclerosis. Journal of Scleroderma and Related Disorders, 2016, 1, 186-193.	1.7	41
39	Novel sGC Stimulators and sGC Activators for the Treatment of Heart Failure. Handbook of Experimental Pharmacology, 2016, 243, 225-247.	1.8	77
40	The Three-Decade Long Journey in Heart Failure Drug Development. Handbook of Experimental Pharmacology, 2016, 243, 1-14.	1.8	12
41	Effects of PDE5 Inhibitors and sGC Stimulators in a Rat Model of Artificial Ureteral Calculosis. PLoS ONE, 2015, 10, e0141477.	2.5	7
42	Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGF \hat{l}^2 signalling. Annals of the Rheumatic Diseases, 2015, 74, 1408-1416.	0.9	92
43	Stimulators of soluble guanylate cyclase (sGC) inhibit experimental skin fibrosis of different aetiologies. Annals of the Rheumatic Diseases, 2015, 74, 1621-1625.	0.9	60
44	From bedside to benchâ€"meeting report of the 7th International Conference on cGMP "cGMP: generators, effectors and therapeutic implications―in Trier, Germany, from June 19th to 21st 2015. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 1237-1246.	3.0	13
45	Activators and stimulators of soluble guanylate cyclase counteract myofibroblast differentiation of prostatic and dermal stromal cells. Experimental Cell Research, 2015, 338, 162-169.	2.6	24
46	In Vivo Screening for Cystic Fibrosis Drugs: Transfer of Clinical Readâ€Out Parameters in CF Patients to the delF508 CFTR CF Mice. FASEB Journal, 2015, 29, 775.9.	0.5	0
47	Stimulation of soluble guanylate cyclase reduces experimental dermal fibrosis. Annals of the Rheumatic Diseases, 2012, 71, 1019-1026.	0.9	74
48	cGMP-Prkg1 signaling and Pde5 inhibition shelter cochlear hair cells and hearing function. Nature Medicine, 2012, 18, 252-259.	30.7	82
49	Vardenafil Decreases Bladder Afferent Nerve Activity in Unanesthetized, Decerebrate, Spinal Cord–Injured Rats. European Urology, 2011, 59, 272-279.	1.9	57
50	Erectile Dysfunction and Lower Urinary Tract. Handbook of Experimental Pharmacology, 2009, , 507-531.	1.8	12
51	Phosphodiesterase 5 inhibitors and erectile dysfunction. Expert Opinion on Therapeutic Patents, 2008, 18, 21-33.	5.0	12
52	Nitric Oxide/cAMP Interactions in the Control of Rat Renal Vascular Resistance. Circulation Research, 1999, 84, 186-192.	4.5	55