Liu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/964207/publications.pdf

Version: 2024-02-01

201674 254184 4,940 46 27 43 citations h-index g-index papers 47 47 47 5789 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Bioinspired design of highly sensitive flexible tactile sensors for wearable healthcare monitoring. Materials Today Chemistry, 2022, 23, 100718.	3 . 5	31
2	Magnetic soft continuum robots with contact forces. Extreme Mechanics Letters, 2022, 51, 101604.	4.1	22
3	Graded Interlocks for Iontronic Pressure Sensors with High Sensitivity and High Linearity over a Broad Range. ACS Nano, 2022, 16, 4338-4347.	14.6	103
4	Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nature Communications, 2022, 13, 1317.	12.8	141
5	A strain-programmed patch for the healing of diabetic wounds. Nature Biomedical Engineering, 2022, 6, 1118-1133.	22.5	82
6	First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins. Advanced Materials, 2021, 33, e2003464.	21.0	155
7	Piezocatalytic Foam for Highly Efficient Degradation of Aqueous Organics. Small Science, 2021, 1, 2000011.	9.9	32
8	Interfacial Iontronic Sensing: First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins (Adv. Mater. 7/2021). Advanced Materials, 2021, 33, 2170050.	21.0	0
9	Shape-Programmable Interfacial Solar Evaporator with Salt-Precipitation Monitoring Function. ACS Nano, 2021, 15, 5752-5761.	14.6	53
10	Evolutionary design of magnetic soft continuum robots. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	85
11	lontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes. Science Bulletin, 2021, 66, 1091-1100.	9.0	103
12	Anisotropically Fatigueâ€Resistant Hydrogels. Advanced Materials, 2021, 33, e2102011.	21.0	114
13	Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nature Communications, 2021, 12, 5072.	12.8	87
14	Skin-electrode iontronic interface for mechanosensing. Nature Communications, 2021, 12, 4731.	12.8	72
15	Highly Sensitive Capacitive Pressure Sensors over a Wide Pressure Range Enabled by the Hybrid Responses of a Highly Porous Nanocomposite. Advanced Materials, 2021, 33, e2103320.	21.0	133
16	Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nature Communications, 2020, 11, 209.	12.8	426
17	Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Science Advances, 2020, 6, .	10.3	99
18	Mechanics of Crater-Enabled Soft Dry Adhesives: A Review. Frontiers in Mechanical Engineering, 2020, 6, .	1.8	7

#	Article	IF	Citations
19	Hard-magnetic elastica. Journal of the Mechanics and Physics of Solids, 2020, 142, 104045.	4.8	123
20	Graphene electronic tattoo sensors for point-of-care personal health monitoring and human–machine interfaces. , 2020, , 59-86.		5
21	Epidermal electrodes with enhanced breathability and high sensing performance. Materials Today Physics, 2020, 12, 100191.	6.0	19
22	Axisymmetric instability of soft elastic tubes under axial load and surface tension. International Journal of Solids and Structures, 2020, 191-192, 341-350.	2.7	16
23	Tuning the Rigidity of Silk Fibroin for the Transfer of Highly Stretchable Electronics. Advanced Functional Materials, 2020, 30, 2001518.	14.9	34
24	Large scale and integrated platform for digital mass culture of anchorage dependent cells. Nature Communications, 2019, 10, 4824.	12.8	17
25	Crack Control in Biotemplated Gold Films for Wideâ€Range, Highly Sensitive Strain Sensing. Advanced Materials Interfaces, 2019, 6, 1901223.	3.7	17
26	Soft-packaged sensory glove system for human-like natural interaction and control of prosthetic hands. NPG Asia Materials, 2019, 11, .	7.9	30
27	Suction effects of crater arrays. Extreme Mechanics Letters, 2019, 30, 100496.	4.1	7
28	Modular and Reconfigurable Wireless Eâ€Tattoos for Personalized Sensing. Advanced Materials Technologies, 2019, 4, 1900117.	5.8	86
29	Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nature Communications, 2019, 10, 5205.	12.8	148
30	Suction effects of craters under water. Soft Matter, 2018, 14, 8509-8520.	2.7	7
31	Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range. Small, 2018, 14, e1800819.	10.0	326
32	Bulging intervertebral disc: an asymptotic elasticity solution. Acta Mechanica Sinica/Lixue Xuebao, 2018, 34, 1167-1173.	3.4	0
33	Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode. Advanced Functional Materials, 2017, 27, 1605286.	14.9	151
34	Suction effects in cratered surfaces. Journal of the Royal Society Interface, 2017, 14, 20170377.	3.4	12
35	A Thin Elastic Membrane Conformed to a Soft and Rough Substrate Subjected to Stretching/Compression. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	2.2	36
36	Graphene Electronic Tattoo Sensors. ACS Nano, 2017, 11, 7634-7641.	14.6	476

#	Article	IF	CITATION
37	Effects of surface tension on the suction forces generated by miniature craters. Extreme Mechanics Letters, 2017, 15, 130-138.	4.1	7
38	Stretchable Electronics: Stretchable and Transparent Biointerface Using Cellâ€Sheet–Graphene Hybrid for Electrophysiology and Therapy of Skeletal Muscle (Adv. Funct. Mater. 19/2016). Advanced Functional Materials, 2016, 26, 3182-3182.	14.9	4
39	Stretchable and Transparent Biointerface Using Cellâ€Sheet–Graphene Hybrid for Electrophysiology and Therapy of Skeletal Muscle. Advanced Functional Materials, 2016, 26, 3207-3217.	14.9	123
40	Conformability of a Thin Elastic Membrane Laminated on a Soft Substrate With Slightly Wavy Surface. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	2.2	58
41	A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnology, $2016, 11, 566-572$.	31.5	1,394
42	Stretchability, Conformability, and Low-Cost Manufacture of Epidermal Sensors. Microsystems and Nanosystems, 2016, , 31-51.	0.1	3
43	Conformability of a Thin Elastic Membrane Laminated on a Rigid Substrate With Corrugated Surface. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5, 1237-1243.	2.5	17
44	Camel-back band-induced power factor enhancement of thermoelectric lead-tellurium from Boltzmann transport calculations. Applied Physics Letters, 2014, 104, .	3.3	14
45	Coupled hydrothermal synthesis/hot pressing of PbSe/C@PbTe heterostructured composites with enhanced thermoelectric performance. Materials Letters, 2014, 117, 49-52.	2.6	9
46	Airway narrowing and internal structural constraints. Journal of Applied Physiology, 2000, 88, 527-533.	2.5	54