
Carmen Constantin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9641330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas. Review of Scientific Instruments, 2009, 80, 113505.	0.6	73
2	Observation of collisionless shocks in a large currentâ€free laboratory plasma. Geophysical Research Letters, 2014, 41, 7413-7418.	1.5	62
3	Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston. Physics of Plasmas, 2012, 19, .	0.7	34
4	High-energy Nd:glass laser facility for collisionless laboratory astrophysics. Journal of Instrumentation, 2012, 7, P03010-P03010.	0.5	34
5	Hybrid simulation of shock formation for super-Alfvénic expansion of laser ablated debris through an ambient, magnetized plasma. Physics of Plasmas, 2013, 20, .	0.7	29
6	Collisionless momentum transfer in space and astrophysical explosions. Nature Physics, 2017, 13, 573-577.	6.5	26
7	On the generation of magnetized collisionless shocks in the large plasma device. Physics of Plasmas, 2017, 24, .	0.7	26
8	Characterization of laser-produced carbon plasmas relevant to laboratory astrophysics. Journal of Applied Physics, 2016, 120, .	1.1	24
9	Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device. Physics of Plasmas, 2014, 21, .	0.7	22
10	Experimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston. Physics of Plasmas, 2015, 22, .	0.7	22
11	Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma. Physics of Plasmas, 2018, 25, .	0.7	19
12	A platform for high-repetition-rate laser experiments on the Large Plasma Device. High Power Laser Science and Engineering, 2018, 6, .	2.0	14
13	Bias Voltage Control in Pulsed Applications for Mach–Zehnder Electrooptic Intensity Modulators. IEEE Transactions on Control Systems Technology, 2017, 25, 1890-1895.	3.2	10
14	Thomson Scattering Measurements of Temperature and Density in a Low-Density, Laser-Driven Magnetized Plasma. Journal of Instrumentation, 2012, 7, P02002-P02002.	0.5	8
15	Enhanced collisionless shock formation in a magnetized plasma containing a density gradient. Physical Review E, 2014, 90, 041101.	0.8	8
16	Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma. Physics of Plasmas, 2017, 24, .	0.7	7
17	Raster Thomson scattering in large-scale laser plasmas produced at high repetition rate. Review of Scientific Instruments, 2021, 92, 093102.	0.6	7
18	High repetition rate exploration of the Biermann battery effect in laser produced plasmas over large spatial regions. High Power Laser Science and Engineering, 2022, 10, .	2.0	7

#	Article	IF	CITATIONS
19	Spatially resolved Thomson scattering measurements of the transition from the collective to the non-collective regime in a laser-produced plasma. Review of Scientific Instruments, 2016, 87, 11E701.	0.6	5
20	Laser-produced plasmas as drivers of laboratory collisionless quasi-parallel shocks. Physics of Plasmas, 2020, 27, 042103.	0.7	5
21	Measurements of ion velocity distributions in a large scale laser-produced plasma. Review of Scientific Instruments, 2020, 91, 103103.	0.6	3
22	Spectroscopic measurement of high-frequency electric fields in the interaction of explosive debris plasma with magnetized background plasma. Physics of Plasmas, 2014, 21, .	0.7	2