Anna Å**š**ósarczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9640811/publications.pdf

Version: 2024-02-01

257450 265206 1,948 57 24 42 citations g-index h-index papers 57 57 57 2664 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. Journal of Molecular Structure, 2005, 744-747, 657-661.	3.6	365
2	The FTIR spectroscopy and QXRD studies of calcium phosphate based materials produced from the powder precursors with different ratios. Ceramics International, 1997, 23, 297-304.	4.8	110
3	Mechanical properties of HAp–ZrO2 composites. Journal of the European Ceramic Society, 2006, 26, 1481-1488.	5.7	102
4	Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: The effect on physicochemical properties. Journal of Molecular Structure, 2011, 987, 40-50.	3.6	88
5	Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. Journal of Molecular Structure, 2010, 976, 301-309.	3.6	77
6	<i>In vivo</i> implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion., 2015, 103, 151-158.		73
7	Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose. Ceramics International, 2009, 35, 2249-2254.	4.8	70
8	Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture. Journal of Molecular Structure, 2010, 977, 145-152.	3.6	62
9	Structural transformation of synthetic hydroxyapatite under simulated in vivo conditions studied with ATR-FTIR spectroscopic imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 171, 155-161.	3.9	61
10	Phase stability of hydroxyapatite–zirconia (HAp–ZrO2) composites for bone replacement. Journal of Molecular Structure, 2004, 704, 333-340.	3.6	59
11	Hot pressed hydroxyapatite–carbon fibre composites. Journal of the European Ceramic Society, 2000, 20, 1397-1402.	5.7	57
12	The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants. Biomaterials, 2000, 21, 1215-1221.	11.4	48
13	A comparative study of carbonate bands from nanocrystalline carbonated hydroxyapatites using FT-IR spectroscopy in the transmission and photoacoustic modes. Journal of Molecular Structure, 2011, 997, 7-14.	3.6	44
14	Alpha-tricalcium phosphate synthesized by two different routes: Structural and spectroscopic characterization. Ceramics International, 2015, 41, 5727-5733.	4.8	37
15	Novel selfâ€gelling injectable hydrogel/alphaâ€ŧricalcium phosphate composites for bone regeneration: Physiochemical and microcomputer tomographical characterization. Journal of Biomedical Materials Research - Part A, 2018, 106, 822-828.	4.0	36
16	Estimation of the specific surface area of apatites in human mineralized tissues using 31P MAS NMR. Solid State Nuclear Magnetic Resonance, 2007, 32, 53-58.	2.3	35
17	Physicochemical properties and biomimetic behaviour of $\hat{l}\pm$ -TCP-chitosan based materials. Ceramics International, 2014, 40, 5523-5532.	4.8	33
18	Study on the new bone cement based on calcium sulfate and Mg, CO3 doped hydroxyapatite. Ceramics International, 2012, 38, 4935-4942.	4.8	31

#	Article	IF	CITATIONS
19	The kinetics of pentoxifylline release in vivo from drug-loaded hydroxyapatite implants. Ceramics International, 2001, 27, 767-772.	4.8	30
20	Ceramic materials on the basis of hydroxyapatite and tricalcium phosphate. Ceramics International, 1999, 25, 561-565.	4.8	29
21	Novel multicomponent organic–inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2019, 107, 2479-2491.	4.0	29
22	The effect of phosphate source on the sintering of carbonate substituted hydroxyapatite. Ceramics International, 2010, 36, 577-582.	4.8	28
23	Effect of a carbonated HAP/ \hat{l}^2 -glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits. Materials Science and Engineering C, 2015, 53, 60-67.	7.3	27
24	Efficiency of 1H→31P NMR cross-polarization in bone apatite and its mineral standards. Solid State Nuclear Magnetic Resonance, 2006, 29, 345-348.	2.3	25
25	Evaluation of antibacterial activity and cytocompatibility of α-TCP based bone cements with silver-doped hydroxyapatite and CaCO3. Ceramics International, 2017, 43, 13997-14007.	4.8	25
26	Covalent coating of hydroxyapatite by keratin stabilizes gentamicin release. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 102-113.	3.4	24
27	Do novel cement-type biomaterials reveal ion reactivity that affects cell viability in vitro?. Open Life Sciences, 2014, 9, 277-289.	1.4	22
28	The comparison study of bioactivity between composites containing synthetic non-substituted and carbonate-substituted hydroxyapatite. Materials Science and Engineering C, 2016, 62, 260-267.	7.3	22
29	Novel bioresorbable tricalcium phosphate/polyhydroxyoctanoate (TCP/PHO) composites as scaffolds for bone tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 235-245.	3.1	20
30	Porous hydroxyapatite ceramics. Journal of Materials Science Letters, 1999, 18, 1163-1165.	0.5	17
31	HAp–ZrO2 composite coatings prepared by plasma spraying for biomedical applications. Ceramics International, 2005, 31, 567-571.	4.8	17
32	Cytocompatibility of the selected calcium phosphate based bone cements: comparative study in human cell culture. Journal of Materials Science: Materials in Medicine, 2015, 26, 270.	3.6	17
33	The importance of chitosan and nano-TiHA in cement-type composites on the basis of calcium sulfate. Ceramics International, 2016, 42, 15559-15567.	4.8	16
34	Influence of sodium alginate and methylcellulose on hydrolysis and physicochemical properties of α-TCP based materials. Ceramics International, 2018, 44, 6533-6540.	4.8	16
35	How calcite and modified hydroxyapatite influence physicochemical properties and cytocompatibility of alpha-TCP based bone cements. Journal of Materials Science: Materials in Medicine, 2017, 28, 117.	3.6	15
36	Kinetics of NMR cross-polarization from protons to phosphorus-31 in natural brushite. Solid State Nuclear Magnetic Resonance, 2000, 15, 237-238.	2.3	14

#	Article	IF	Citations
37	Influence of magnesium and silver ions on rheological properties of hydroxyapatite/chitosan/calcium sulphate based bone cements. Ceramics International, 2017, 43, 16196-16203.	4.8	14
38	Biomicroconcretes based on the hybrid HAp/CTS granules, \hat{l}_{\pm} -TCP and pectins as a novel injectable bone substitutes. Materials Letters, 2020, 265, 127457.	2.6	14
39	Influence of the Ca- and P-enriched oxide layers produced on titanium and the Ti6Al4V alloy by the IBAD method upon the corrosion resistance of these materials. Vacuum, 2003, 70, 163-167.	3.5	13
40	New Hybrid Bioactive Composites for Bone Substitution. Processes, 2020, 8, 335.	2.8	13
41	Functionalized tricalcium phosphate and poly(3-hydroxyoctanoate) derived composite scaffolds as platforms for the controlled release of diclofenac. Ceramics International, 2021, 47, 3876-3883.	4.8	13
42	Application of \hat{l}^2 -1,3-glucan in production of ceramics-based elastic composite for bone repair. Open Life Sciences, 2013, 8, 534-548.	1.4	12
43	Solidâ€State NMR Study of Mn ²⁺ for Ca ²⁺ Substitution in Thermally Processed Hydroxyapatites. Journal of the American Ceramic Society, 2015, 98, 1265-1274.	3.8	12
44	Evaluation of a setting reaction pathway in the novel composite TiHA–CSD bone cement by FT-Raman and FT-IR spectroscopy. Journal of Molecular Structure, 2013, 1034, 289-295.	3.6	11
45	New approach in evaluation of ceramic-polymer composite bioactivity and biocompatibility. Analytical and Bioanalytical Chemistry, 2017, 409, 5747-5755.	3.7	10
46	In vivo behavior of biomicroconcretes based on αâ€tricalcium phosphate and hybrid hydroxyapatite/chitosan granules and sodium alginate. Journal of Biomedical Materials Research - Part A, 2020, 108, 1243-1255.	4.0	9
47	Effect of Gold Nanoparticles and Silicon on the Bioactivity and Antibacterial Properties of Hydroxyapatite/Chitosan/Tricalcium Phosphate-Based Biomicroconcretes. Materials, 2021, 14, 3854.	2.9	9
48	Comparative in vitro study of calcium phosphate ceramics for their potency as scaffolds for tissue engineering. Bio-Medical Materials and Engineering, 2014, 24, 1609-1623.	0.6	7
49	Influence of Selected Surfactants on Physicochemical Properties of Calcium Phosphate Bone Cements. Langmuir, 2019, 35, 13656-13662.	3.5	7
50	Comparative study on physicochemical properties of alpha-TCP / calcium sulphate dihydrate biomicroconcretes containing chitosan, sodium alginate or methylcellulose. Acta of Bioengineering and Biomechanics, 2020, 22, .	0.4	6
51	Development of highly porous calcium phosphate bone cements applying nonionic surface active agents. RSC Advances, 2021, 11, 23908-23921.	3.6	5
52	Physicochemical properties of the novel biphasic hydroxyapatite-magnesium phosphate biomaterial. Acta of Bioengineering and Biomechanics, 2013, 15, 53-63.	0.4	4
53	Effects of Mg Additives on Properties of Mg-Doped Hydroxyapatite Ceramics. Advances in Science and Technology, 2010, 76, 60-65.	0.2	3
54	Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM. Bio-Medical Materials and Engineering, 2017, 28, 235-246.	0.6	2

Anna Ślósarczyk

#	Article	IF	CITATIONS
55	Comparative study on physicochemical properties of alpha-TCP / calcium sulphate dihydrate biomicroconcretes containing chitosan, sodium alginate or methylcellulose. Acta of Bioengineering and Biomechanics, 2020, 22, 47-56.	0.4	2
56	Drug Release from Hydroxyapatite Implants with Different Microstructure and Phase Composition. Advances in Science and Technology, 2006, 49, 62-67.	0.2	1
57	Use of microporous hydroxyapatite material in regenerative treatment of periodontal tissues in dogs: a clinical study. Medycyna Weterynaryjna, 2018, 74, 5985-2018.	0.1	O