Christoph

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/964060/publications.pdf Version: 2024-02-01

Снрістори

#	Article	IF	CITATIONS
1	Effects of the Hydrous Domain in the Mantle Wedge on Magma Formation and Mixing at the Northeast Lau Spreading Center, SW Pacific. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	3
2	Geology, U-Pb geochronology and stable isotope geochemistry of the Heihaibei gold deposit in the southern part of the Eastern Kunlun Orogenic Belt, China: A granitic intrusion-related gold deposit?. Ore Geology Reviews, 2022, 144, 104859.	1.1	4
3	The submarine Azores Plateau: Evidence for a waning mantle plume?. Marine Geology, 2022, 451, 106858.	0.9	5
4	Heavy <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si46.svg"><mml:mrow><mml:mi>δ</mml:mi></mml:mrow></mml:math> 57Fe in ocean island basalts: A non-unique signature of processes and source lithologies in the mantle. Geochimica Et Cosmochimica Acta, 2021, 292, 309-332.	1.6	36
5	Chapter 3.2b Bransfield Strait and James Ross Island: petrology. Geological Society Memoir, 2021, 55, 285-301.	0.9	13
6	A 360-degree View of Crustal Magmatic Systems. Eos, 2021, 102, .	0.1	0
7	The Evolution of Central Volcanoes in Ultraslow Rift Systems: Constraints From D. João de Castro Seamount, Azores. Tectonics, 2021, 40, e2020TC006663.	1.3	5
8	Volcanic Structures and Magmatic Evolution of the Vesteris Seamount, Greenland Basin. Frontiers in Earth Science, 2021, 9, .	0.8	4
9	Constraints on mantle evolution from Ce-Nd-Hf isotope systematics. Geochimica Et Cosmochimica Acta, 2020, 272, 36-53.	1.6	20
10	Rifting of the oceanic Azores Plateau with episodic volcanic activity. Scientific Reports, 2020, 10, 19718.	1.6	14
11	Evolution of Magmatism in the New Hebrides Island Arc and in Initial Backâ€Arc Rifting, SW Pacific. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008946.	1.0	4
12	Tracking crystal-melt segregation and magma recharge using zircon trace element data. Chemical Geology, 2020, 542, 119596.	1.4	28
13	Chemical Evolution of Calc-alkaline Magmas during the Ascent through Continental Crust: Constraints from Methana, Aegean Arc. Journal of Petrology, 2020, 61, .	1.1	5
14	Progressive Changes in Magma Transport at the Active Serreta Ridge, Azores. Geochemistry, Geophysics, Geosystems, 2019, 20, 5394-5414.	1.0	6
15	Geochemical mapping of a paleo-subduction zone beneath the Troodos Ophiolite. Chemical Geology, 2019, 523, 1-8.	1.4	22
16	In Situ Chalcophile and Siderophile Element Behavior in Sulfides from Moroccan Middle Atlas Spinel Peridotite Xenoliths during Metasomatism and Weathering. Minerals (Basel, Switzerland), 2019, 9, 276.	0.8	4
17	Extreme intensity of fluid-rock interaction during extensive intraplate volcanism. Geochimica Et Cosmochimica Acta, 2019, 257, 26-48.	1.6	6
18	A Comparison of the Magmatic Evolution of Pacific Intraplate Volcanoes: Constraints on Melting in Mantle Plumes. Frontiers in Earth Science, 2019, 6, .	0.8	11

Christoph

#	Article	IF	CITATIONS
19	Melting and Mantle Sources in the Azores. Active Volcanoes of the World, 2018, , 251-280.	1.0	8
20	Where to Go? A Selection and Short Description of Geological Highlights in the Azores. Active Volcanoes of the World, 2018, , 331-355.	1.0	4
21	Geochemical constraints on the link between volcanism and plutonism at the Yunshan caldera complex, SE China. Contributions To Mineralogy and Petrology, 2018, 173, 1.	1.2	43
22	Evidence for melting of subducting carbonate-rich sediments in the western Aegean Arc. Chemical Geology, 2018, 483, 463-473.	1.4	22
23	Zircon trace element constrains on the link between volcanism and plutonism in SE China. Lithos, 2018, 320-321, 28-34.	0.6	35
24	Tectonic control on the genesis of magmas in the New Hebrides arc (Vanuatu). Lithos, 2018, 312-313, 290-307.	0.6	15
25	Correlated Changes Between Volcanic Structures and Magma Composition in the Faial Volcanic System, Azores. Frontiers in Earth Science, 2018, 6, .	0.8	14
26	Petrogenesis of boninitic lavas from the Troodos Ophiolite, and comparison with Izu–Bonin–Mariana fore-arc crust. Earth and Planetary Science Letters, 2018, 498, 203-214.	1.8	70
27	Primitive andesites from the Taupo Volcanic Zone formed by magma mixing. Contributions To Mineralogy and Petrology, 2017, 172, 1.	1.2	47
28	Magmatic Evolution and Source Variations at the Nifonea Ridge (New Hebrides Island Arc). Journal of Petrology, 2017, 58, 473-494.	1.1	12
29	Trace Element and Isotope Geochemistry of the Northern and Central Tongan Islands with an Emphasis on the Genesis of High Nb/Ta Signatures at the Northern Volcanoes of Tafahi and Niuatoputapu. Journal of Petrology, 2017, 58, 1073-1106.	1.1	24
30	Rift–plume interaction reveals multiple generations of recycled oceanic crust in Azores lavas. Geochimica Et Cosmochimica Acta, 2017, 218, 132-152.	1.6	26
31	210Pb-226Ra disequilibria in young gas-laden magmas. Scientific Reports, 2017, 7, 45186.	1.6	9
32	Spatial variability of source composition and petrogenesis in rift and rift flank alkaline lavas from the Eger Rift, Central Europe. Chemical Geology, 2017, 455, 304-314.	1.4	23
33	Constraints on the magmatic evolution of the oceanic crust from plagiogranite intrusions in the Oman ophiolite. Contributions To Mineralogy and Petrology, 2016, 171, 1.	1.2	37
34	Chemical and oxygen isotope composition of gem-quality apatites: Implications for oxygen isotope reference materials for secondary ion mass spectrometry (SIMS). Chemical Geology, 2016, 440, 164-178.	1.4	32
35	The timescales of magma evolution at mid-ocean ridges. Lithos, 2016, 240-243, 49-68.	0.6	15
36	Comparing the nature of the western and eastern Azores mantle. Geochimica Et Cosmochimica Acta, 2016, 172, 76-92.	1.6	21

CHRISTOPH

#	Article	IF	CITATIONS
37	A HETEROGENEOUS RECYCLED OCEANIC LITHOSPHERE IN THE AZORES PLUME REVEALED BY THE HF-ND ISOTOPE SYSTEMATICS OF TERCEIRA RIFT LAVAS. , 2016, , .		0
38	Formation of andesite melts and Caâ€rich plagioclase in the submarine Monowai volcanic system, Kermadec arc. Geochemistry, Geophysics, Geosystems, 2015, 16, 4130-4152.	1.0	14
39	Mantle heterogeneity controls on small-volume basaltic volcanism: REPLY. Geology, 2015, 43, e371-e371.	2.0	1
40	Origin of Silicic Magmas at Spreading Centres—an Example from the South East Rift, Manus Basin. Journal of Petrology, 2015, 56, 255-272.	1.1	29
41	Mantle heterogeneity controls on small-volume basaltic volcanism. Geology, 2015, 43, 551-554.	2.0	25
42	Magmatic Evidence for Carbonate Metasomatism in the Lithospheric Mantle underneath the Ohře (Eger) Rift. Journal of Petrology, 2015, 56, 1743-1774.	1.1	33
43	Lithium and boron isotope systematics in lavas from the Azores islands reveal crustal assimilation. Chemical Geology, 2014, 373, 27-36.	1.4	52
44	Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos Ophiolite, Cyprus. Contributions To Mineralogy and Petrology, 2014, 167, 1.	1.2	46
45	Geochemistry of volcanic glasses from the Louisville Seamount Trail (IODP Expedition 330): Implications for eruption environments and mantle melting. Geochemistry, Geophysics, Geosystems, 2014, 15, 1718-1738.	1.0	18
46	Louisville Seamount Chain: Petrogenetic processes and geochemical evolution of the mantle source. Geochemistry, Geophysics, Geosystems, 2014, 15, 2380-2400.	1.0	42
47	Formation of the Troodos Ophiolite at a triple junction: Evidence from trace elements in volcanic glass. Chemical Geology, 2014, 386, 66-79.	1.4	50
48	Melting versus contamination effects on 238U–230Th–226Ra and 235U–231Pa disequilibria in lavas from SA£o Miguel, Azores. Chemical Geology, 2014, 381, 94-109.	1.4	20
49	Geochemical evidence for melting of carbonated peridotite on Santa Maria Island, Azores. Contributions To Mineralogy and Petrology, 2013, 165, 823-841.	1.2	42
50	Oxygen isotope evidence for the formation of andesitic–dacitic magmas from the fast-spreading Pacific–Antarctic Rise by assimilation–fractional crystallisation. Chemical Geology, 2013, 347, 271-283.	1.4	57
51	High mantle temperatures following rifting caused by continental insulation. Nature Geoscience, 2013, 6, 391-394.	5.4	56
52	Petrology and geochemistry of the Tertiary Suez rift volcanism, Sinai, Egypt. Journal of Volcanology and Geothermal Research, 2013, 267, 119-137.	0.8	22
53	Oxygen isotopes in the Azores islands: Crustal assimilation recorded in olivine. Geology, 2013, 41, 491-494.	2.0	53
54	The Petrology and Geochemistry of Lavas from the Western Azores Islands of Flores and Corvo. Journal of Petrology, 2012, 53, 1673-1708.	1.1	35

CHRISTOPH

#	Article	IF	CITATIONS
55	Limited latitudinal mantle plume motion for the Louisville hotspot. Nature Geoscience, 2012, 5, 911-917.	5.4	85
56	Cone morphologies associated with shallow marine eruptions: east Pico Island, Azores. Bulletin of Volcanology, 2012, 74, 2289-2301.	1.1	29
57	Volcanism on the flanks of the East Pacific Rise: Quantitative constraints on mantle heterogeneity and melting processes. Chemical Geology, 2012, 298-299, 41-56.	1.4	48
58	Correction to "Lithospheric control on geochemical composition along the Louisville Seamount Chain― Geochemistry, Geophysics, Geosystems, 2012, 13, n/a-n/a.	1.0	0
59	Magmatic evolution of the South Shetland Islands, Antarctica, and implications for continental crust formation. Contributions To Mineralogy and Petrology, 2012, 163, 1103-1119.	1.2	33
60	Conditions of melting beneath the Azores. Lithos, 2012, 144-145, 1-11.	0.6	59
61	U-Th-Ra disequilibria and the extent of off-axis volcanism across the East Pacific Rise at 9°30′N, 10°30′N, and 11°20′N. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	45
62	Insights into the Galápagos plume from uranium-series isotopes of recently erupted basalts. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	9
63	Lithospheric control on geochemical composition along the Louisville Seamount Chain. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	46
64	Magmatic evolution of a dying spreading axis: Evidence for the interaction of tectonics and mantle heterogeneity from the fossil Phoenix Ridge, Drake Passage. Chemical Geology, 2011, 280, 115-125.	1.4	31
65	Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt. Lithos, 2011, 126, 321-340.	0.6	259
66	Dynamics of melting beneath a small-scale basaltic system: a U-Th–Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand. Contributions To Mineralogy and Petrology, 2011, 162, 547-563.	1.2	51
67	Generation and evolution of magma beneath the East Pacific Rise: Constraints from U-series disequilibrium and plagioclase-hosted melt inclusions. Journal of Volcanology and Geothermal Research, 2010, 193, 1-17.	0.8	14
68	A preliminary assessment of the symmetry of source composition and melting dynamics across the Azores plume. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	29
69	Influence of subducted components on backâ€arc melting dynamics in the Manus Basin. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	33
70	Lava penetrating water: Submarine lava flows around the coasts of Pico Island, Azores. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	59
71	Heat sources for mantle plumes. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	2
72	Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	78

CHRISTOPH

#	Article	IF	CITATIONS
73	Source depletion and extent of melting in the Tongan sub-arc mantle. Earth and Planetary Science Letters, 2008, 273, 279-288.	1.8	43
74	Plumes and Their Role in Whole Mantle Convection and Recycling. GSA Today, 2008, 18, 46.	1.1	0
75	The peculiar geochemical signatures of São Miguel (Azores) lavas: Metasomatised or recycled mantle sources?. Earth and Planetary Science Letters, 2007, 259, 186-199.	1.8	88
76	Sapropel burn-down and ichnological response to late Quaternary sapropel formation in two â^1⁄4400Âky records from the eastern Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239, 406-425.	1.0	34
77	Magma Evolution of the Sete Cidades Volcano, São Miguel, Azores. Journal of Petrology, 2006, 47, 1375-1411.	1.1	96
78	Tectonic control of ocean island basalt sources on São Miguel, Azores?. Geophysical Research Letters, 2003, 30, .	1.5	39
79	Geochemical and geochronological constraints on the evolution of the Azores Plateau. Special Paper of the Ceological Society of America. 0 27-55	0.5	18