Christoph

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/964060/publications.pdf

Version: 2024-02-01

79 papers	2,493 citations	147566 31 h-index	214527 47 g-index
85 all docs	85 docs citations	85 times ranked	2343 citing authors

#	Article	IF	CITATIONS
1	Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt. Lithos, 2011, 126, 321-340.	0.6	259
2	Magma Evolution of the Sete Cidades Volcano, São Miguel, Azores. Journal of Petrology, 2006, 47, 1375-1411.	1.1	96
3	The peculiar geochemical signatures of São Miguel (Azores) lavas: Metasomatised or recycled mantle sources?. Earth and Planetary Science Letters, 2007, 259, 186-199.	1.8	88
4	Limited latitudinal mantle plume motion for the Louisville hotspot. Nature Geoscience, 2012, 5, 911-917.	5.4	85
5	Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	78
6	Petrogenesis of boninitic lavas from the Troodos Ophiolite, and comparison with Izu–Bonin–Mariana fore-arc crust. Earth and Planetary Science Letters, 2018, 498, 203-214.	1.8	70
7	Lava penetrating water: Submarine lava flows around the coasts of Pico Island, Azores. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	59
8	Conditions of melting beneath the Azores. Lithos, 2012, 144-145, 1-11.	0.6	59
9	Oxygen isotope evidence for the formation of andesitic–dacitic magmas from the fast-spreading Pacific–Antarctic Rise by assimilation–fractional crystallisation. Chemical Geology, 2013, 347, 271-283.	1.4	57
10	High mantle temperatures following rifting caused by continental insulation. Nature Geoscience, 2013, 6, 391-394.	5.4	56
11	Oxygen isotopes in the Azores islands: Crustal assimilation recorded in olivine. Geology, 2013, 41, 491-494.	2.0	53
12	Lithium and boron isotope systematics in lavas from the Azores islands reveal crustal assimilation. Chemical Geology, 2014, 373, 27-36.	1.4	52
13	Dynamics of melting beneath a small-scale basaltic system: a U-Th–Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand. Contributions To Mineralogy and Petrology, 2011, 162, 547-563.	1.2	51
14	Formation of the Troodos Ophiolite at a triple junction: Evidence from trace elements in volcanic glass. Chemical Geology, 2014, 386, 66-79.	1.4	50
15	Volcanism on the flanks of the East Pacific Rise: Quantitative constraints on mantle heterogeneity and melting processes. Chemical Geology, 2012, 298-299, 41-56.	1.4	48
16	Primitive andesites from the Taupo Volcanic Zone formed by magma mixing. Contributions To Mineralogy and Petrology, 2017, 172, 1.	1.2	47
17	Lithospheric control on geochemical composition along the Louisville Seamount Chain. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	46
18	Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos Ophiolite, Cyprus. Contributions To Mineralogy and Petrology, 2014, 167, 1.	1.2	46

#	Article	IF	Citations
19	U-Th-Ra disequilibria and the extent of off-axis volcanism across the East Pacific Rise at 9°30′N, 10°30′N, and 11°20′N. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	45
20	Source depletion and extent of melting in the Tongan sub-arc mantle. Earth and Planetary Science Letters, 2008, 273, 279-288.	1.8	43
21	Geochemical constraints on the link between volcanism and plutonism at the Yunshan caldera complex, SE China. Contributions To Mineralogy and Petrology, 2018, 173, 1.	1.2	43
22	Geochemical evidence for melting of carbonated peridotite on Santa Maria Island, Azores. Contributions To Mineralogy and Petrology, 2013, 165, 823-841.	1.2	42
23	Louisville Seamount Chain: Petrogenetic processes and geochemical evolution of the mantle source. Geochemistry, Geophysics, Geosystems, 2014, 15, 2380-2400.	1.0	42
24	Tectonic control of ocean island basalt sources on São Miguel, Azores?. Geophysical Research Letters, 2003, 30, .	1.5	39
25	Constraints on the magmatic evolution of the oceanic crust from plagiogranite intrusions in the Oman ophiolite. Contributions To Mineralogy and Petrology, 2016, 171, 1.	1.2	37
26	Heavy <mml:math altimg="si46.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>î'</mml:mi></mml:mrow></mml:math> 57Fe in ocean island basalts: A non-unique signature of processes and source lithologies in the mantle. Geochimica Et Cosmochimica Acta, 2021, 292, 309-332.	1.6	36
27	The Petrology and Geochemistry of Lavas from the Western Azores Islands of Flores and Corvo. Journal of Petrology, 2012, 53, 1673-1708.	1.1	35
28	Zircon trace element constrains on the link between volcanism and plutonism in SE China. Lithos, 2018, 320-321, 28-34.	0.6	35
29	Sapropel burn-down and ichnological response to late Quaternary sapropel formation in two â ¹ /4400Âky records from the eastern Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239, 406-425.	1.0	34
30	Influence of subducted components on backâ€arc melting dynamics in the Manus Basin. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	33
31	Magmatic evolution of the South Shetland Islands, Antarctica, and implications for continental crust formation. Contributions To Mineralogy and Petrology, 2012, 163, 1103-1119.	1.2	33
32	Magmatic Evidence for Carbonate Metasomatism in the Lithospheric Mantle underneath the Ohře (Eger) Rift. Journal of Petrology, 2015, 56, 1743-1774.	1.1	33
33	Chemical and oxygen isotope composition of gem-quality apatites: Implications for oxygen isotope reference materials for secondary ion mass spectrometry (SIMS). Chemical Geology, 2016, 440, 164-178.	1.4	32
34	Magmatic evolution of a dying spreading axis: Evidence for the interaction of tectonics and mantle heterogeneity from the fossil Phoenix Ridge, Drake Passage. Chemical Geology, 2011, 280, 115-125.	1.4	31
35	A preliminary assessment of the symmetry of source composition and melting dynamics across the Azores plume. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	29
36	Cone morphologies associated with shallow marine eruptions: east Pico Island, Azores. Bulletin of Volcanology, 2012, 74, 2289-2301.	1.1	29

#	Article	IF	CITATIONS
37	Origin of Silicic Magmas at Spreading Centres—an Example from the South East Rift, Manus Basin. Journal of Petrology, 2015, 56, 255-272.	1.1	29
38	Tracking crystal-melt segregation and magma recharge using zircon trace element data. Chemical Geology, 2020, 542, 119596.	1.4	28
39	Rift–plume interaction reveals multiple generations of recycled oceanic crust in Azores lavas. Geochimica Et Cosmochimica Acta, 2017, 218, 132-152.	1.6	26
40	Mantle heterogeneity controls on small-volume basaltic volcanism. Geology, 2015, 43, 551-554.	2.0	25
41	Trace Element and Isotope Geochemistry of the Northern and Central Tongan Islands with an Emphasis on the Genesis of High Nb/Ta Signatures at the Northern Volcanoes of Tafahi and Niuatoputapu. Journal of Petrology, 2017, 58, 1073-1106.	1.1	24
42	Spatial variability of source composition and petrogenesis in rift and rift flank alkaline lavas from the Eger Rift, Central Europe. Chemical Geology, 2017, 455, 304-314.	1.4	23
43	Petrology and geochemistry of the Tertiary Suez rift volcanism, Sinai, Egypt. Journal of Volcanology and Geothermal Research, 2013, 267, 119-137.	0.8	22
44	Evidence for melting of subducting carbonate-rich sediments in the western Aegean Arc. Chemical Geology, 2018, 483, 463-473.	1.4	22
45	Geochemical mapping of a paleo-subduction zone beneath the Troodos Ophiolite. Chemical Geology, 2019, 523, 1-8.	1.4	22
46	Comparing the nature of the western and eastern Azores mantle. Geochimica Et Cosmochimica Acta, 2016, 172, 76-92.	1.6	21
47	Melting versus contamination effects on 238U–230Th–226Ra and 235U–231Pa disequilibria in lavas from SÁ£o Miguel, Azores. Chemical Geology, 2014, 381, 94-109.	1.4	20
48	Constraints on mantle evolution from Ce-Nd-Hf isotope systematics. Geochimica Et Cosmochimica Acta, 2020, 272, 36-53.	1.6	20
49	Geochemistry of volcanic glasses from the Louisville Seamount Trail (IODP Expedition 330): Implications for eruption environments and mantle melting. Geochemistry, Geophysics, Geosystems, 2014, 15, 1718-1738.	1.0	18
50	Geochemical and geochronological constraints on the evolution of the Azores Plateau. Special Paper of the Geological Society of America, 0, , 27-55.	0.5	18
51	The timescales of magma evolution at mid-ocean ridges. Lithos, 2016, 240-243, 49-68.	0.6	15
52	Tectonic control on the genesis of magmas in the New Hebrides arc (Vanuatu). Lithos, 2018, 312-313, 290-307.	0.6	15
53	Generation and evolution of magma beneath the East Pacific Rise: Constraints from U-series disequilibrium and plagioclase-hosted melt inclusions. Journal of Volcanology and Geothermal Research, 2010, 193, 1-17.	0.8	14
54	Formation of andesite melts and Caâ€rich plagioclase in the submarine Monowai volcanic system, Kermadec arc. Geochemistry, Geophysics, Geosystems, 2015, 16, 4130-4152.	1.0	14

#	Article	IF	Citations
55	Correlated Changes Between Volcanic Structures and Magma Composition in the Faial Volcanic System, Azores. Frontiers in Earth Science, 2018, 6, .	0.8	14
56	Rifting of the oceanic Azores Plateau with episodic volcanic activity. Scientific Reports, 2020, 10, 19718.	1.6	14
57	Chapter 3.2bâ€fBransfield Strait and James Ross Island: petrology. Geological Society Memoir, 2021, 55, 285-301.	0.9	13
58	Magmatic Evolution and Source Variations at the Nifonea Ridge (New Hebrides Island Arc). Journal of Petrology, 2017, 58, 473-494.	1.1	12
59	A Comparison of the Magmatic Evolution of Pacific Intraplate Volcanoes: Constraints on Melting in Mantle Plumes. Frontiers in Earth Science, 2019, 6, .	0.8	11
60	Insights into the $Gal\tilde{A}_i$ pagos plume from uranium-series isotopes of recently erupted basalts. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	9
61	210Pb-226Ra disequilibria in young gas-laden magmas. Scientific Reports, 2017, 7, 45186.	1.6	9
62	Melting and Mantle Sources in the Azores. Active Volcanoes of the World, 2018, , 251-280.	1.0	8
63	Progressive Changes in Magma Transport at the Active Serreta Ridge, Azores. Geochemistry, Geophysics, Geosystems, 2019, 20, 5394-5414.	1.0	6
64	Extreme intensity of fluid-rock interaction during extensive intraplate volcanism. Geochimica Et Cosmochimica Acta, 2019, 257, 26-48.	1.6	6
65	Chemical Evolution of Calc-alkaline Magmas during the Ascent through Continental Crust: Constraints from Methana, Aegean Arc. Journal of Petrology, 2020, 61, .	1.1	5
66	The Evolution of Central Volcanoes in Ultraslow Rift Systems: Constraints From D. João de Castro Seamount, Azores. Tectonics, 2021, 40, e2020TC006663.	1.3	5
67	The submarine Azores Plateau: Evidence for a waning mantle plume?. Marine Geology, 2022, 451, 106858.	0.9	5
68	Where to Go? A Selection and Short Description of Geological Highlights in the Azores. Active Volcanoes of the World, 2018, , 331-355.	1.0	4
69	In Situ Chalcophile and Siderophile Element Behavior in Sulfides from Moroccan Middle Atlas Spinel Peridotite Xenoliths during Metasomatism and Weathering. Minerals (Basel, Switzerland), 2019, 9, 276.	0.8	4
70	Evolution of Magmatism in the New Hebrides Island Arc and in Initial Backâ€Arc Rifting, SW Pacific. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008946.	1.0	4
71	Volcanic Structures and Magmatic Evolution of the Vesteris Seamount, Greenland Basin. Frontiers in Earth Science, 2021, 9, .	0.8	4
72	Geology, U-Pb geochronology and stable isotope geochemistry of the Heihaibei gold deposit in the southern part of the Eastern Kunlun Orogenic Belt, China: A granitic intrusion-related gold deposit?. Ore Geology Reviews, 2022, 144, 104859.	1.1	4

#	Article	IF	Citations
73	Effects of the Hydrous Domain in the Mantle Wedge on Magma Formation and Mixing at the Northeast Lau Spreading Center, SW Pacific. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	3
74	Heat sources for mantle plumes. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	2
75	Mantle heterogeneity controls on small-volume basaltic volcanism: REPLY. Geology, 2015, 43, e371-e371.	2.0	1
76	Correction to "Lithospheric control on geochemical composition along the Louisville Seamount Chain― Geochemistry, Geophysics, Geosystems, 2012, 13, n/a-n/a.	1.0	0
77	A 360-degree View of Crustal Magmatic Systems. Eos, 2021, 102, .	0.1	O
78	Plumes and Their Role in Whole Mantle Convection and Recycling. GSA Today, 2008, 18, 46.	1.1	0
79	A HETEROGENEOUS RECYCLED OCEANIC LITHOSPHERE IN THE AZORES PLUME REVEALED BY THE HF-ND ISOTOPE SYSTEMATICS OF TERCEIRA RIFT LAVAS. , 2016, , .		0