
Yoshiaki Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9640270/publications.pdf Version: 2024-02-01

Υσεμιλκι Τλνιλκλ

#	Article	IF	CITATIONS
1	Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids. Nature Communications, 2022, 13, 430.	12.8	49
2	Challenges for Computational Stem Cell Biology: A Discussion for the Field. Stem Cell Reports, 2021, 16, 3-9.	4.8	4
3	Identification and validation of a five-IncRNA signature for predicting survival with targeted drug candidates in ovarian cancer. Bioengineered, 2021, 12, 3263-3274.	3.2	19
4	Regional specification and complementation with non-neuroectodermal cells in human brain organoids. Journal of Molecular Medicine, 2021, 99, 489-500.	3.9	14
5	Exploration of alcohol use disorder-associated brain miRNA–mRNA regulatory networks. Translational Psychiatry, 2021, 11, 504.	4.8	23
6	Dysregulation of BRD4 Function Underlies the Functional Abnormalities of MeCP2 Mutant Neurons. Molecular Cell, 2020, 79, 84-98.e9.	9.7	53
7	Mural Cell-Specific Deletion of Cerebral Cavernous Malformation 3 in the Brain Induces Cerebral Cavernous Malformations. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2171-2186.	2.4	18
8	Synthetic Analyses of Single-Cell Transcriptomes from Multiple Brain Organoids and Fetal Brain. Cell Reports, 2020, 30, 1682-1689.e3.	6.4	150
9	The RNA exosome nuclease complex regulates human embryonic stem cell differentiation. Journal of Cell Biology, 2019, 218, 2564-2582.	5.2	35
10	Engineering of human brain organoids with a functional vascular-like system. Nature Methods, 2019, 16, 1169-1175.	19.0	551
11	Salivary microRNAs identified by small RNA sequencing and machine learning as potential biomarkers of alcohol dependence. Epigenomics, 2019, 11, 739-749.	2.1	19
12	hESC-Derived Thalamic Organoids Form Reciprocal Projections When Fused with Cortical Organoids. Cell Stem Cell, 2019, 24, 487-497.e7.	11.1	305
13	Uhrf1 regulates active transcriptional marks at bivalent domains in pluripotent stem cells through Setd1a. Nature Communications, 2018, 9, 2583.	12.8	35
14	Single cell transcriptomics reveals unanticipated features of early hematopoietic precursors. Nucleic Acids Research, 2017, 45, gkw1214.	14.5	40
15	Direct Reprogramming of Human Dermal Fibroblasts Into Endothelial Cells Using ER71/ETV2. Circulation Research, 2017, 120, 848-861.	4.5	90
16	Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration. Cell Stem Cell, 2017, 21, 383-398.e7.	11.1	508
17	New Advances in Human X Chromosome Status from a Developmental and Stem Cell Biology. Tissue Engineering and Regenerative Medicine, 2017, 14, 643-652.	3.7	0

18 3 Genetic and Epigenetic Considerations in iPSC Technology. , 2017, , 51-86.

0

Υοςηιακί Τανακά

#	Article	IF	CITATIONS
19	Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family. Stem Cell Reports, 2016, 7, 43-54.	4.8	31
20	Histone Deacetylases Positively Regulate Transcription through the Elongation Machinery. Cell Reports, 2015, 13, 1444-1455.	6.4	138
21	Transcriptome Signature and Regulation in Human Somatic Cell Reprogramming. Stem Cell Reports, 2015, 4, 1125-1139.	4.8	19
22	Transcriptional regulation in pluripotent stem cells by methyl CpG-binding protein 2 (MeCP2). Human Molecular Genetics, 2014, 23, 1045-1055.	2.9	32
23	X Chromosome of Female Cells Shows Dynamic Changes in Status during Human Somatic Cell Reprogramming. Stem Cell Reports, 2014, 2, 896-909.	4.8	33
24	Two methods for full-length RNA sequencing for low quantities of cells and single cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 594-599.	7.1	103
25	Human induced pluripotent stem cells and neurodegenerative disease. Current Opinion in Neurology, 2012, 25, 125-130.	3.6	64
26	Impact of Retrotransposons in Pluripotent Stem Cells. Molecules and Cells, 2012, 34, 509-516.	2.6	5
27	Positional variations among heterogeneous nucleosome maps give dynamical information on chromatin. Chromosoma, 2010, 119, 391-404.	2.2	8
28	Effects of Alu elements on global nucleosome positioning in the human genome. BMC Genomics, 2010, 11, 309.	2.8	46
29	AN ASSESSMENT OF PREDICTION ALGORITHMS FOR NUCLEOSOME POSITIONING. , 2009, , .		5
30	An assessment of prediction algorithms for nucleosome positioning. Genome Informatics, 2009, 23, 169-78.	0.4	7
31	EFFECT OF SALIVA-PAROTIN UPON THE PATHOLOGICAL CHANGEOF THE PARADENTIUM IN RATS DURING THE COURSEOF THE EXPERIMENTAL LATHYRISM. Koku Eisei Gakkai Zasshi, 1960, 10, 184-195.	0.0	0