Leilei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9640150/publications.pdf

Version: 2024-02-01

		257101	500791
28	6,182	24	28
papers	citations	h-index	g-index
30	30	30	6514
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 2014, 5, 5634.	5.8	890
2	Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chemical Reviews, 2020, 120, 683-733.	23.0	871
3	Discriminating Catalytically Active FeN _{<i>x</i>} Species of Atomically Dispersed Fe–N–C Catalyst for Selective Oxidation of the C–H Bond. Journal of the American Chemical Society, 2017, 139, 10790-10798.	6.6	738
4	Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chemical Science, 2016, 7, 5758-5764.	3.7	571
5	Performance of Cu-Alloyed Pd Single-Atom Catalyst for Semihydrogenation of Acetylene under Simulated Front-End Conditions. ACS Catalysis, 2017, 7, 1491-1500.	5. 5	374
6	Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nature Communications, 2019, 10, 4500.	5 . 8	279
7	Co–N–C Catalyst for C–C Coupling Reactions: On the Catalytic Performance and Active Sites. ACS Catalysis, 2015, 5, 6563-6572.	5. 5	260
8	Single-atom catalyst: a rising star for green synthesis of fine chemicals. National Science Review, 2018, 5, 653-672.	4.6	258
9	A Durable Nickel Singleâ€Atom Catalyst for Hydrogenation Reactions and Cellulose Valorization under Harsh Conditions. Angewandte Chemie - International Edition, 2018, 57, 7071-7075.	7.2	243
10	Efficient and Durable Au Alloyed Pd Single-Atom Catalyst for the Ullmann Reaction of Aryl Chlorides in Water. ACS Catalysis, 2014, 4, 1546-1553.	5 . 5	221
11	Dynamic Behavior of Single-Atom Catalysts in Electrocatalysis: Identification of Cu-N ₃ as an Active Site for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2021, 143, 14530-14539.	6.6	218
12	Potential-Driven Restructuring of Cu Single Atoms to Nanoparticles for Boosting the Electrochemical Reduction of Nitrate to Ammonia. Journal of the American Chemical Society, 2022, 144, 12062-12071.	6.6	192
13	Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones. Nature Communications, 2021, 12, 3295.	5. 8	152
14	Hydrogenolysis of Glycerol to 1,3â€propanediol under Low Hydrogen Pressure over WO _{<i>x</i>} â€Supported Single/Pseudoâ€Single Atom Pt Catalyst. ChemSusChem, 2016, 9, 784-790.	3 . 6	140
15	ZnAlâ€Hydrotalciteâ€Supported Au ₂₅ Nanoclusters as Precatalysts for Chemoselective Hydrogenation of 3â€Nitrostyrene. Angewandte Chemie - International Edition, 2017, 56, 2709-2713.	7.2	127
16	Aerobic oxidative coupling of alcohols and amines over Au–Pd/resin in water: Au/Pd molar ratios switch the reaction pathways to amides or imines. Green Chemistry, 2013, 15, 2680.	4.6	114
17	Remarkable effect of alkalis on the chemoselective hydrogenation of functionalized nitroarenes over high-loading Pt/FeO _x catalysts. Chemical Science, 2017, 8, 5126-5131.	3.7	90
18	Oxidative strong metal–support interactions (OMSI) of supported platinum-group metal catalysts. Chemical Science, 2018, 9, 6679-6684.	3.7	89

#	Article	IF	CITATION
19	A Durable Nickel Singleâ€Atom Catalyst for Hydrogenation Reactions and Cellulose Valorization under Harsh Conditions. Angewandte Chemie, 2018, 130, 7189-7193.	1.6	64
20	Cleavage of lignin C–O bonds over a heterogeneous rhenium catalyst through hydrogen transfer reactions. Green Chemistry, 2019, 21, 5556-5564.	4.6	62
21	Oxygen surface groups of activated carbon steer the chemoselective hydrogenation of substituted nitroarenes over nickel nanoparticles. Chemical Communications, 2017, 53, 1969-1972.	2.2	53
22	Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Research, 2022, 15, 519-527.	5.8	53
23	ZnAlâ€Hydrotalciteâ€Supported Au ₂₅ Nanoclusters as Precatalysts for Chemoselective Hydrogenation of 3â€Nitrostyrene. Angewandte Chemie, 2017, 129, 2753-2757.	1.6	40
24	Modulating <i>trans</i> -imination and hydrogenation towards the highly selective production of primary diamines from dialdehydes. Green Chemistry, 2020, 22, 6897-6901.	4.6	32
25	Introducing Co–O Moiety to Co–N–C Single-Atom Catalyst for Ethylbenzene Dehydrogenation. ACS Catalysis, 2022, 12, 7760-7772.	5.5	23
26	Synergy between Ru and WO <i>_x</i> Enables Efficient Hydrodeoxygenation of Primary Amides to Amines. ACS Catalysis, 2022, 12, 6302-6312.	5.5	18
27	Highly efficient Co single-atom catalyst for epoxidation of plant oils. Journal of Chemical Physics, 2021, 154, 131103.	1.2	6
28	Reaction kinetics and phase behavior in the chemoselective hydrogenation of 3-nitrostyrene over Co-N-C single-atom catalyst in compressed CO2. Chinese Journal of Catalysis, 2021, 42, 1617-1624.	6.9	4