Yiyin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9639994/publications.pdf Version: 2024-02-01

361413 377865 1,512 34 20 34 citations h-index g-index papers 35 35 35 2172 docs citations times ranked citing authors all docs

Υινιν Ηιμαίς

#	Article	IF	CITATIONS
1	Atomic Modulation and Structure Design of Carbons for Bifunctional Electrocatalysis in Metal–Air Batteries. Advanced Materials, 2019, 31, e1803800.	21.0	208
2	Oriented Growth of ZIFâ€67 to Derive 2D Porous CoPO Nanosheets for Electrochemicalâ€{Photovoltageâ€Driven Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1706120.	14.9	171
3	Conductive metal–organic framework nanowire arrays for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 10431-10438.	10.3	115
4	Reversible Aqueous Zinc–CO ₂ Batteries Based on CO ₂ –HCOOH Interconversion. Angewandte Chemie - International Edition, 2018, 57, 16996-17001.	13.8	108
5	Rechargeable Zn–CO ₂ Electrochemical Cells Mimicking Two‣tep Photosynthesis. Advanced Materials, 2019, 31, e1807807.	21.0	87
6	Atomic Modulation, Structural Design, and Systematic Optimization for Efficient Electrochemical Nitrogen Reduction. Advanced Science, 2020, 7, 1902390.	11.2	73
7	Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation. Journal of Materials Chemistry A, 2019, 7, 8376-8383.	10.3	72
8	Robust and Highly Active FeNi@NCNT Nanowire Arrays as Integrated Air Electrode for Flexible Solid‧tate Rechargeable Znâ€Air Batteries. Advanced Materials Interfaces, 2018, 5, 1701448.	3.7	70
9	A porous Zn cathode for Li–CO ₂ batteries generating fuel-gas CO. Journal of Materials Chemistry A, 2018, 6, 13952-13958.	10.3	66
10	A high-efficiency microwave approach to synthesis of Bi-modified Pt nanoparticle catalysts for ethanol electro-oxidation in alkaline medium. Applied Catalysis B: Environmental, 2013, 129, 549-555.	20.2	55
11	A trifunctional Ni–N/P–O-codoped graphene electrocatalyst enables dual-model rechargeable Zn–CO ₂ /Zn–O ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 2575-2580.	10.3	53
12	Electrochemical CO ₂ Reduction on Cu: Synthesis ontrolled Structure Preference and Selectivity. Advanced Science, 2021, 8, e2101597.	11.2	42
13	Mixed-Metal–Organic Framework Self-Template Synthesis of Porous Hybrid Oxyphosphides for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 38621-38628.	8.0	40
14	Si–C–F decorated porous carbon materials: A new class of electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 7924-7929.	10.3	39
15	Carbonâ€Based Electrocatalysts: Atomic Modulation and Structure Design of Carbons for Bifunctional Electrocatalysis in Metal–Air Batteries (Adv. Mater. 13/2019). Advanced Materials, 2019, 31, 1970095.	21.0	37
16	Surface evolution of electrocatalysts in energy conversion reactions. Nano Energy, 2021, 82, 105745.	16.0	36
17	Co-intercalation of multiple active units into graphene by pyrolysis of hydrogen-bonded precursors for zinc–air batteries and water splitting. Journal of Materials Chemistry A, 2017, 5, 20882-20891.	10.3	34
18	Highly exposed Fe–N ₄ active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode. Dalton Transactions, 2017, 46, 1803-1810.	3.3	32

YIYIN HUANG

#	Article	IF	CITATIONS
19	Metal-free sites with multidimensional structure modifications for selective electrochemical CO2 reduction. Nano Today, 2020, 33, 100891.	11.9	23
20	Electrochemical Carbon Dioxide Splitting. ChemElectroChem, 2019, 6, 1587-1604.	3.4	22
21	Sandwich-type porous carbon/sulfur/polyaniline composite as cathode material for high-performance lithium–sulfur batteries. RSC Advances, 2016, 6, 104591-104596.	3.6	18
22	Reversible Hybrid Aqueous Liâ^'CO ₂ Batteries with High Energy Density and Formic Acid Production. ChemSusChem, 2020, 13, 2621-2627.	6.8	16
23	Strategies for Electrochemically Sustainable H ₂ Production in Acid. Advanced Science, 2022, 9, e2104916.	11.2	15
24	A bioinspired approach to protectively decorate platinum–carbon for enhanced activity and durability in oxygen reduction. Journal of Power Sources, 2014, 268, 591-595.	7.8	13
25	Reversible Aqueous Zinc–CO 2 Batteries Based on CO 2 –HCOOH Interconversion. Angewandte Chemie, 2018, 130, 17242-17247.	2.0	13
26	Scalable synthesis of nano-sandwich N-doped carbon materials with hierarchical-structure for energy conversion and storage. RSC Advances, 2016, 6, 93318-93324.	3.6	12
27	Stepwise chemical oxidation to access ultrathin metal (oxy)-hydroxide nanosheets for the oxygen evolution reaction. Nanoscale, 2021, 13, 15755-15762.	5.6	11
28	Fragmenting C60 toward enhanced electrochemical CO2 reduction. Journal of Materials Science, 2021, 56, 11426-11435.	3.7	9
29	Novel Nâ€Mo ₂ C Active Sites for Efficient Solarâ€ŧoâ€Hydrogen Generation. ChemElectroChem, 2018, 5, 1186-1190.	3.4	6
30	Synergistic Supports Beyond Carbon Black for Polymer Electrolyte Fuel Cell Anodes. ChemCatChem, 2018, 10, 4497-4508.	3.7	5
31	Understanding the Aging Mechanism of Na-Based Layered Oxide Cathodes with Different Stacking Structures. ACS Applied Materials & amp; Interfaces, 2022, 14, 33410-33418.	8.0	5
32	<i>In situ</i> surface reduction for accessing atomically dispersed platinum on carbon sheets for acidic hydrogen evolution. Nanoscale, 2021, 13, 18677-18683.	5.6	4
33	Frontispiece: Reversible Aqueous Zinc–CO ₂ Batteries Based on CO ₂ –HCOOH Interconversion. Angewandte Chemie - International Edition, 2018, 57, .	13.8	1
34	Frontispiz: Reversible Aqueous Zinc–CO ₂ Batteries Based on CO ₂ –HCOOH Interconversion. Angewandte Chemie, 2018, 130, .	2.0	0