Piotr Dziugan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/963960/publications.pdf Version: 2024-02-01

ΡΙΟΤΡ ΠΖΙΠΟΛΝ

#	Article	IF	CITATIONS
1	Fabrication and Characterization of Gel Beads of Whey Isolate Protein–Pectin Complex for Loading Quercetin and Their Digestion Release. Gels, 2022, 8, 18.	4.5	14
2	Detoxification of Oral Exposure to Benzo(a)pyrene by Lactobacillus plantarum CICC 23121 in Mice. Molecular Nutrition and Food Research, 2021, 65, 2001149.	3.3	2
3	Integrated Transcriptome and Proteome Analyses Reveal Protein Metabolism in Lactobacillus helveticus CICC22171. Frontiers in Microbiology, 2021, 12, 635685.	3.5	0
4	Ability of Yeast Metabolic Activity to Reduce Sugars and Stabilize Betalains in Red Beet Juice. Fermentation, 2021, 7, 105.	3.0	6
5	A novel insight to screen the optimal spray-drying protectants and parameters for manufacturing lactic acid bacteria preparations. Drying Technology, 2020, 38, 1843-1856.	3.1	8
6	Biochars from Post-Production Biomass and Waste from Wood Management: Analysis of Carbonization Products. Materials, 2020, 13, 4971.	2.9	13
7	Potential of Waste Biomass from the Sugar Industry as a Source of Furfural and Its Derivatives for Use as Fuel Additives in Poland. Energies, 2020, 13, 6684.	3.1	16
8	Combined Yeast Cultivation and Pectin Hydrolysis as an Effective Method of Producing Prebiotic Animal Feed from Sugar Beet Pulp. Biomolecules, 2020, 10, 724.	4.0	10
9	Co-Pyrolysis of Beet Pulp and Defecation Lime in TG-MS System. Energies, 2020, 13, 2304.	3.1	4
10	Production of Methane, Hydrogen and Ethanol from Secale cereale L. Straw Pretreated with Sulfuric Acid. Molecules, 2020, 25, 1013.	3.8	9
11	Potential of Inactivated Bifidobacterium Strain in Attenuating Benzo(A)Pyrene Exposure-Induced Damage in Colon Epithelial Cells In Vitro. Toxics, 2020, 8, 12.	3.7	8
12	Use of saccharose and structural polysaccharides from sugar beet biomass for bioethanol production. International Agrophysics, 2020, 34, 151-159.	1.7	2
13	The Use of Acidic Hydrolysates after Furfural Production from Sugar Waste Biomass as a Fermentation Medium in the Biotechnological Production of Hydrogen. Energies, 2019, 12, 3222.	3.1	14
14	New Sulfur Organic Polymer-Concrete Composites Containing Waste Materials: Mechanical Characteristics and Resistance to Biocorrosion. Materials, 2019, 12, 2602.	2.9	18
15	Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives. Materials, 2019, 12, 350.	2.9	91
16	Two-Stage Pretreatment to Improve Saccharification of Oat Straw and Jerusalem Artichoke Biomass. Energies, 2019, 12, 1715.	3.1	17
17	Comparison of Three Deoxidation Agents for Ozonated Broths Used in Anaerobic Biotechnological Processes. Processes, 2019, 7, 65.	2.8	1
18	Effect of dilute acid pretreatment on the saccharification and fermentation of rye straw. Biotechnology Progress, 2019, 35, e2789.	2.6	11

PIOTR DZIUGAN

#	Article	IF	CITATIONS
19	Radium content and radon exhalation rate from sulfur polymer composites (SPC) based on mineral fillers. Construction and Building Materials, 2019, 198, 390-398.	7.2	18
20	Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Advances, 2018, 8, 3161-3177.	3.6	84
21	Nitric Acid Pretreatment of Jerusalem Artichoke Stalks for Enzymatic Saccharification and Bioethanol Production. Energies, 2018, 11, 2153.	3.1	39
22	Utilization of Waste from Methane Fermentation in Lemnaceae Plant Breeding Intended for Energy Purposes. Springer Proceedings in Energy, 2018, , 267-274.	0.3	2
23	Simultaneous Saccharification and Fermentation of Sugar Beet Pulp for Efficient Bioethanol Production. BioMed Research International, 2016, 2016, 1-10.	1.9	49
24	Ozonation as an effective way to stabilize new kinds of fermentation media used in biotechnological production of liquid fuel additives. Biotechnology for Biofuels, 2016, 9, 150.	6.2	10
25	Continuous catalytic coupling of raw bioethanol into butanol and higher homologues. Fuel, 2015, 158, 81-90.	6.4	21
26	Evaluation of probiotic properties of Lactobacillus strains isolated from traditional Chinese cheese. Annals of Microbiology, 2015, 65, 1419-1426.	2.6	8
27	Utilisation of sugar beet bagasse for the biosynthesis of yeast SCP. Journal of Food Engineering, 2015, 167, 32-37.	5.2	31
28	The effects of carrageenan on stability of arachin and the interactions between them. Food Hydrocolloids, 2015, 43, 763-768.	10.7	25
29	Hydrogenation of furfural over Pd–Cu/Al2O3 catalysts. The role of interaction between palladium and copper on determining catalytic properties. Journal of Molecular Catalysis A, 2014, 395, 337-348.	4.8	90
30	Characterization of a bioactive peptide with cytomodulatory effect released from casein. European Food Research and Technology, 2014, 238, 315-322.	3.3	10
31	Screening of Lactobacillus strains for their ability to bind Benzo(a)pyrene and the mechanism of the process. Food and Chemical Toxicology, 2013, 59, 67-71.	3.6	54
32	The structure of Pd–M supported catalysts used in the hydrogen transfer reactions (M=In, Bi and Te). Applied Surface Science, 2013, 273, 330-342.	6.1	28
33	Evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production. Biotechnology for Biofuels, 2013, 6, 158.	6.2	31