
Juan Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9638159/publications.pdf Version: 2024-02-01

ΙΠΑΝ ΗΠ

#	Article	IF	CITATIONS
1	Single Quantum Dot-Based Nanosensor for Multiple DNA Detection. Analytical Chemistry, 2010, 82, 1921-1927.	3.2	162
2	Sensitive Detection of DNA Methyltransferase Using Hairpin Probe-Based Primer Generation Rolling Circle Amplification-Induced Chemiluminescence. Analytical Chemistry, 2013, 85, 6143-6150.	3.2	144
3	Electrostatic Interaction Based Approach to Thrombin Detection by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2009, 81, 87-93.	3.2	125
4	Sensitive Detection of Transcription Factors by Isothermal Exponential Amplification-Based Colorimetric Assay. Analytical Chemistry, 2012, 84, 9544-9549.	3.2	115
5	Sensitive Detection of Nucleic Acids with Rolling Circle Amplification and Surface-Enhanced Raman Scattering Spectroscopy. Analytical Chemistry, 2010, 82, 8991-8997.	3.2	110
6	Integration of isothermal amplification with quantum dot-based fluorescence resonance energy transfer for simultaneous detection of multiple microRNAs. Chemical Science, 2018, 9, 4258-4267.	3.7	105
7	Single base extension reaction-based surface enhanced Raman spectroscopy for DNA methylation assay. Biosensors and Bioelectronics, 2012, 31, 451-457.	5.3	92
8	Surface-enhanced Raman spectroscopy for simultaneous sensitive detection of multiple microRNAs in lung cancer cells. Chemical Communications, 2014, 50, 11883-11886.	2.2	86
9	Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy. Analyst, The, 2010, 135, 1084.	1.7	80
10	An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework. Biosensors and Bioelectronics, 2018, 122, 168-174.	5.3	78
11	Advances in single quantum dot-based nanosensors. Chemical Communications, 2017, 53, 13284-13295.	2.2	74
12	Mimic Peroxidase- and Bi ₂ S ₃ Nanorod-Based Photoelectrochemical Biosensor for Signal-On Detection of Polynucleotide Kinase. Analytical Chemistry, 2018, 90, 11478-11485.	3.2	72
13	Construction of Tetrahedral DNA-Quantum Dot Nanostructure with the Integration of Multistep Förster Resonance Energy Transfer for Multiplex Enzymes Assay. ACS Nano, 2019, 13, 7191-7201.	7.3	68
14	Laser-Induced Formation of Metalâ^'Moleculeâ^'Metal Junctions between Au Nanoparticles As Probed by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 6499-6508.	1.5	64
15	Simultaneous sensitive detection of multiple DNA glycosylases from lung cancer cells at the single-molecule level. Chemical Science, 2018, 9, 712-720.	3.7	64
16	Quantum dot-based electrochemical biosensor for stripping voltammetric detection of telomerase at the single-cell level. Biosensors and Bioelectronics, 2018, 122, 51-57.	5.3	56
17	Single Quantum Dot-Based Nanosensor for Sensitive Detection of O-GlcNAc Transferase Activity. Analytical Chemistry, 2017, 89, 12992-12999.	3.2	46
18	A single quantum dot-based nanosensor with multilayer of multiple acceptors for ultrasensitive detection of human alkyladenine DNA glycosylase. Chemical Science, 2019, 10, 8675-8684.	3.7	41

Juan Hu

#	Article	IF	CITATIONS
19	Rolling circle amplification-driven encoding of different fluorescent molecules for simultaneous detection of multiple DNA repair enzymes at the single-molecule level. Chemical Science, 2020, 11, 5724-5734.	3.7	41
20	Label-Free and Immobilization-Free Electrochemical Magnetobiosensor for Sensitive Detection of 5-Hydroxymethylcytosine in Genomic DNA. Analytical Chemistry, 2019, 91, 1232-1236.	3.2	37
21	Simple and Accurate Quantification of Quantum Yield at the Single-Molecule/Particle Level. Analytical Chemistry, 2013, 85, 2000-2004.	3.2	36
22	Sensitive detection of point mutation using exponential strand displacement amplification-based surface enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2015, 65, 191-197.	5.3	32
23	Development of a Single Quantum Dot-Mediated FRET Nanosensor for Sensitive Detection of Single-Nucleotide Polymorphism in Cancer Cells. Analytical Chemistry, 2021, 93, 14568-14576.	3.2	29
24	Simultaneous Enzyme-Free Detection of Multiple Long Noncoding RNAs in Cancer Cells at Single-Molecule/Particle Level. Nano Letters, 2021, 21, 4193-4201.	4.5	27
25	Simple Mix-and-Read Assay with Multiple Cyclic Enzymatic Repairing Amplification for Rapid and Sensitive Detection of DNA Glycosylase. Analytical Chemistry, 2021, 93, 6913-6918.	3.2	24
26	Multicolor fluorescence encoding of different microRNAs in lung cancer tissues at the single-molecule level. Chemical Science, 2021, 12, 12407-12418.	3.7	24
27	Label-Free and Template-Free Chemiluminescent Biosensor for Sensitive Detection of 5-Hydroxymethylcytosine in Genomic DNA. Analytical Chemistry, 2021, 93, 1939-1943.	3.2	20
28	Construction of a sensitive protease sensor with DNA-peptide conjugates for single-molecule detection of multiple matrix metalloproteinases. Biosensors and Bioelectronics, 2020, 169, 112647.	5.3	18
29	Target-initiated synthesis of fluorescent copper nanoparticles for the sensitive and label-free detection of bleomycin. Nanoscale, 2018, 10, 11134-11142.	2.8	17
30	Metabolomic profiling of fatty acid biomarkers for intracerebral hemorrhage stroke. Talanta, 2021, 222, 121679.	2.9	14
31	Multiplex detection of lung cancer cells at the single-molecule level. Chemical Communications, 2014, 50, 13581-13584.	2.2	13
32	Target-Initiated Cascade Signal Amplification Lights up a G-Quadruplex for a Label-Free Detection of Circular Ribonucleic Acids. Analytical Chemistry, 2022, 94, 9193-9200.	3.2	13
33	Construction of a single quantum dot nanosensor with the capability of sensing methylcytosine sites for sensitive quantification of methyltransferase. Nanoscale, 2020, 12, 4519-4526.	2.8	10
34	Label-free and homogeneous detection of flap endonuclease 1 by ligation-promoted hyperbranched rolling circle amplification platform. Talanta, 2022, 243, 123342.	2.9	9
35	A multifunctional DNA nanostructure based on multicolor FRET for nuclease activity assay. Analyst, The, 2020, 145, 6054-6060.	1.7	7
36	A single quantum dot-based fluorescence resonance energy transfer biosensor for antibody-free detection of ten-eleven translocation 1. Chemical Communications, 2021, 57, 3543-3546.	2.2	7

Juan Hu

#	Article	IF	CITATIONS
37	Hydroxymethylation-Specific Ligation-Mediated Single Quantum Dot-Based Nanosensors for Sensitive Detection of 5-Hydroxymethylcytosine in Cancer Cells. Analytical Chemistry, 2022, 94, 9785-9792.	3.2	7
38	Deacetylation-activated construction of single quantum dot-based nanosensor for sirtuin 1 assay. Talanta, 2021, 224, 121918.	2.9	5
39	Synthesis, Structure and Growth Mechanism of Size and Shape Tunable Au/Ag Bimetallic Nanoparticles. Chinese Journal of Chemistry, 2009, 27, 2137-2144.	2.6	4
40	Multimodal optical microscopy in combination with gold nanorods for cancer cell imaging. Journal of Biomedical Optics, 2012, 17, 126002.	1.4	4
41	Advances in Detection of Epigenetic Modification—5-Hydroxymethylcytosine. Acta Chimica Sinica, 2021, 79, 614.	0.5	2
42	A Label-Free Electrochemical Biosensor for Sensitive Detection of 5-Hydroxymethylcytosine. Springer Protocols, 2022, , 45-52.	0.1	0
43	Advance in quantitative single-molecule detection. Scientia Sinica Chimica, 2017, 47, 1161-1169.	0.2	0