
Yuanhui Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9637713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Red-emitting IrIII(C^N)2(P-donor ligand)Cl-type complexes showing aggregation-induced phosphorescent emission (AIPE) behavior for both red and white OLEDs. Dyes and Pigments, 2022, 205, 110538.	3.7	5
2	AIE-active Pt(II) complexes based on a three-ligand molecular framework for high performance solution-processed OLEDs. Chemical Engineering Journal, 2022, 449, 137457.	12.7	5
3	Efficient dinuclear Pt(<scp>ii</scp>) complexes based on the triphenylphosphine oxide scaffold for high performance solution-processed OLEDs. Journal of Materials Chemistry C, 2021, 9, 5373-5378.	5.5	10
4	Highly efficient solution-processed pure yellow OLEDs based on dinuclear Pt(<scp>ii</scp>) complexes. Materials Chemistry Frontiers, 2021, 5, 5698-5705.	5.9	9
5	Mono-, di- and tri-nuclear Pt ^{II} (C^N)(N-donor ligand)Cl complexes showing aggregation-induced phosphorescent emission (AIPE) behavior for efficient solution-processed organic light-emitting devices. Materials Chemistry Frontiers, 2021, 5, 4160-4173.	5.9	2
6	lr ^{III} (C^N) ₂ (P-donor ligand)Cl-type complexes bearing functional groups and showing aggregation-induced phosphorescence emission (AIPE) behavior for highly efficient OLEDs. Journal of Materials Chemistry C, 2021, 9, 12330-12341.	5.5	4
7	Triphenylamine-based trinuclear Pt(II) complexes for solution-processed OLEDs displaying efficient pure yellow and red emissions. Organic Electronics, 2021, 91, 106101.	2.6	9
8	Developing Efficient Dinuclear Pt(II) Complexes Based on the Triphenylamine Core for High-Efficiency Solution-Processed OLEDs. ACS Applied Materials & Interfaces, 2021, 13, 36020-36032.	8.0	7
9	Aggregation-induced phosphorescence emission (AIPE) behaviors in Pt ^{II} (C^N)(N-donor) Tj ETQq1 skeleton and their optoelectronic properties. Journal of Materials Chemistry C, 2021, 9, 2334-2349.	1 0.784314 5.5	rgBT /Over 24
10	Manipulating MLCT transition character with ppy-type four-coordinate organoboron skeleton for highly efficient long-wavelength Ir-based phosphors in organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 12650-12660.	5.5	9
11	Dinuclear Ir(III) complex based on different flanking and bridging cyclometalated ligands: An impressive molecular framework for developing high performance phosphorescent emitters. Chemical Engineering Journal, 2020, 391, 123505.	12.7	17
12	Unsymmetric 2-phenylpyridine (ppy)-type cyclometalated Ir(<scp>iii</scp>) complexes bearing both 5,9-dioxa-13 <i>b</i> -boranaphtho[3,2,1- <i>de</i>]anthracene and phenylsulfonyl groups for tuning optoelectronic properties and electroluminescence abilities. Inorganic Chemistry Frontiers, 2020, 7, 1651-1666.	6.0	9
13	Strategically Formulating Aggregationâ€Induced Emissionâ€Active Phosphorescent Emitters by Restricting the Coordination Skeletal Deformation of Pt(II) Complexes Containing Two Independent Monodentate Ligands. Advanced Optical Materials, 2020, 8, 2000079.	7.3	26
14	Phosphorescent cyanide sensor based on a 2-phenylpyridine(ppy)-type cyclometalated Ir(III) complex bearing dimesitylboron group with concentration distinguishing ability. Journal of Organometallic Chemistry, 2020, 917, 121274.	1.8	2
15	Iridium(<scp>iii</scp>) complexes with the dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]phosphole oxide group and their high optical power limiting performances. Dalton Transactions, 2020, 49, 4967-4976.	3.3	9
16	A dopant-free twisted organic small-molecule hole transport material for inverted planar perovskite solar cells with enhanced efficiency and operational stability. Nano Energy, 2019, 64, 103946.	16.0	49
17	Highly Efficient Deep-Red Organic Light-Emitting Devices Based on Asymmetric Iridium(III) Complexes with the Thianthrene 5,5,10,10-Tetraoxide Moiety. ACS Applied Materials & Interfaces, 2019, 11, 26152-26164.	8.0	52
18	Asymmetric thermally activated delayed fluorescence (TADF) emitters with 5,9-dioxa-13 <i>b</i> -boranaphtho[3,2,1- <i>de</i>]anthracene (OBA) as the acceptor and highly efficient blue-emitting OLEDs. Journal of Materials Chemistry C, 2019, 7, 11953-11963.	5.5	58

Yuanhui Sun

#	Article	IF	CITATIONS
19	Aggregation-induced emission triggered by the radiative-transition-switch of a cyclometallated Pt(<scp>ii</scp>) complex. Journal of Materials Chemistry C, 2019, 7, 12552-12559.	5.5	30
20	High performance solution-processed organic yellow light-emitting devices and fluoride ion sensors based on a versatile phosphorescent Ir(<scp>iii</scp>) complex. Materials Chemistry Frontiers, 2019, 3, 376-384.	5.9	17
21	Towards high performance solution-processed orange organic light-emitting devices: precisely-adjusting properties of lr(<scp>iii</scp>) complexes by reasonably engineering the asymmetric configuration with second functionalized cyclometalating ligands. Journal of Materials Chemistry C. 2019. 7. 8836-8846.	5.5	20
22	Novel Emission Colorâ€Tuning Strategies in Heteroleptic Phosphorescent Ir(III) and Pt(II) Complexes. Chemical Record, 2019, 19, 1710-1728.	5.8	29
23	Enhancing Molecular Aggregations by Intermolecular Hydrogen Bonds to Develop Phosphorescent Emitters for Highâ€Performance Nearâ€Infrared OLEDs. Advanced Science, 2019, 6, 1801930.	11.2	78
24	Achieving High-Performance Solution-Processed Orange OLEDs with the Phosphorescent Cyclometalated Trinuclear Pt(II) Complex. ACS Applied Materials & Interfaces, 2018, 10, 10227-10235.	8.0	55
25	Asymmetric tris-heteroleptic iridium(<scp>iii</scp>) complexes containing three different 2-phenylpyridine-type ligands: a new strategy for improving the electroluminescence ability of phosphorescent emitters. Journal of Materials Chemistry C, 2018, 6, 9453-9464.	5.5	23
26	Flexible unipolar thermoelectric devices based on patterned poly[K _x (Ni-ethylenetetrathiolate)] thin films. Materials Chemistry Frontiers, 2017, 1, 2111-2116.	5.9	28
27	The highly conducting carbon electrodes derived from spin-coated polyacrylonitrile films. Science China Chemistry, 2016, 59, 672-678.	8.2	7
28	Optimization of the thermoelectric properties of poly(nickel-ethylenetetrathiolate) synthesized via potentiostatic deposition. Science China Chemistry, 2016, 59, 1323-1329.	8.2	25
29	Flexible nâ€Type Highâ€Performance Thermoelectric Thin Films of Poly(nickelâ€ethylenetetrathiolate) Prepared by an Electrochemical Method. Advanced Materials, 2016, 28, 3351-3358.	21.0	206
30	Donor–acceptor co-assembled supramolecular nanofibers with high and well-balanced ambipolar charge transport properties under ambient conditions. Chemical Communications, 2016, 52, 4648-4651.	4.1	18
31	n-Type thermoelectric materials based on CuTCNQ nanocrystals and CuTCNQ nanorod arrays. Journal of Materials Chemistry A, 2015, 3, 2677-2683.	10.3	25
32	Thiophene-Diketopyrrolopyrrole-Based Quinoidal Small Molecules as Solution-Processable and Air-Stable Organic Semiconductors: Tuning of the Length and Branching Position of the Alkyl Side Chain toward a High-Performance n-Channel Organic Field-Effect Transistor. ACS Applied Materials & Interfaces, 2015, 7, 15978-15987.	8.0	93
33	Single-bundle nanofiber based OFETs fabricated from a cyclic conjugated organogelator with high field-effect mobility and high photoresponsivity. Chemical Communications, 2015, 51, 12182-12184.	4.1	34
34	Thieno[3,2â€ <i>b</i>]thiopheneâ€Diketopyrrolopyrroleâ€Based Quinoidal Small Molecules: Synthesis, Characterization, Redox Behavior, and nâ€Channel Organic Fieldâ€Effect Transistors. Chemistry - A European Journal, 2014, 20, 13755-13761.	3.3	37