Luca Cesaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9637378/publications.pdf Version: 2024-02-01

LUCA CESARO

#	Article	IF	CITATIONS
1	Comparing the efficacy and selectivity of Ck2 inhibitors. A phosphoproteomics approach. European Journal of Medicinal Chemistry, 2021, 214, 113217.	5.5	15
2	How can a traffic light properly work if it is always green? The paradox of CK2 signaling. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 321-359.	5.2	20
3	Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway. Journal of Functional Foods, 2020, 64, 103696.	3.4	108
4	Fyn specifically Regulates the activity of red cell glucose-6-phosphate-dehydrogenase. Redox Biology, 2020, 36, 101639.	9.0	14
5	A N-terminally deleted form of the CK2α' catalytic subunit is sufficient to support cell viability. Biochemical and Biophysical Research Communications, 2020, 531, 409-415.	2.1	9
6	Prevalence and significance of the commonest phosphorylated motifs in the human proteome: a global analysis. Cellular and Molecular Life Sciences, 2020, 77, 5281-5298.	5.4	13
7	A Journey through the Cytoskeleton with Protein Kinase CK2. Current Protein and Peptide Science, 2019, 20, 547-562.	1.4	27
8	A proteomics analysis of CK2l̂² ^(â^'/â^') C2C12 cells provides novel insights into the biological functions of the non atalytic l̂² subunit. FEBS Journal, 2019, 286, 1561-1575.	4.7	14
9	Re-evaluation of protein kinase CK2 pleiotropy: new insights provided by a phosphoproteomics analysis of CK2 knockout cells. Cellular and Molecular Life Sciences, 2018, 75, 2011-2026.	5.4	49
10	From phosphoproteins to phosphoproteomes: a historical account. FEBS Journal, 2017, 284, 1936-1951.	4.7	26
11	CK2 modulates adipocyte insulin-signaling and is up-regulated in human obesity. Scientific Reports, 2017, 7, 17569.	3.3	24
12	Exploring the CK2 Paradox: Restless, Dangerous, Dispensable. Pharmaceuticals, 2017, 10, 11.	3.8	36
13	Inhibition of protein kinase CK2 by CX-5011 counteracts imatinib-resistance preventing rpS6 phosphorylation in chronic myeloid leukaemia cells: new combined therapeutic strategies. Oncotarget, 2016, 7, 18204-18218.	1.8	19
14	Dissecting the Role of K61/K59 Residue in VPS4 Functions. Protein and Peptide Letters, 2016, 23, 518-524.	0.9	0
15	The generation of phosphoserine stretches in phosphoproteins: mechanism and significance. Molecular BioSystems, 2015, 11, 2666-2679.	2.9	27
16	Protein kinase CK2 potentiates translation efficiency by phosphorylating eIF3j at Ser127. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1693-1701.	4.1	13
17	Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 609-623.	2.3	37
18	A Comparative Analysis and Review of lysyl Residues Affected by Posttranslational Modifications. Current Genomics, 2015, 16, 128-138.	1.6	12

LUCA CESARO

#	Article	IF	CITATIONS
19	A "SYDE―effect of hierarchical phosphorylation: possible relevance to the cystic fibrosis basic defect. Cellular and Molecular Life Sciences, 2014, 71, 2193-2196.	5.4	7
20	Identification of the PLK2-Dependent Phosphopeptidome by Quantitative Proteomics. PLoS ONE, 2014, 9, e111018.	2.5	9
21	Aberrant signalling by protein kinase CK2 in imatinibâ€resistant chronic myeloid leukaemia cells: Biochemical evidence and therapeutic perspectives. Molecular Oncology, 2013, 7, 1103-1115.	4.6	33
22	Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: the implication of tyrosine-512 and phenylalanine-508. Amino Acids, 2013, 45, 1423-1429.	2.7	16
23	Inhibition of Protein Kinase CK2 by Flavonoids and Tyrphostins. A Structural Insight. Biochemistry, 2012, 51, 6097-6107.	2.5	127
24	Inhibition of thioredoxin reductase by lanthanum chloride. Journal of Inorganic Biochemistry, 2012, 117, 18-24.	3.5	14
25	The SH3 domain of HS1 protein recognizes lysine-rich polyproline motifs. Amino Acids, 2012, 42, 1361-1370.	2.7	10
26	Protein kinase CK2 accumulation in "oncophilic―cells: causes and effects. Molecular and Cellular Biochemistry, 2011, 356, 5-10.	3.1	21
27	Recognition of lysineâ€rich peptide ligands by murine cortactin SH3 domain: CD, ITC, and NMR studies. Biopolymers, 2010, 94, 298-306.	2.4	14
28	Mitochondrial tyrosine phosphoproteome: New insights from an upâ€ŧoâ€date analysis. BioFactors, 2010, 36, 437-450.	5.4	15
29	Motif Analysis of Phosphosites Discloses a Potential Prominent Role of the Golgi Casein Kinase (GCK) in the Generation of Human Plasma Phospho-Proteome. Journal of Proteome Research, 2010, 9, 3335-3338.	3.7	39
30	Variable contribution of protein kinases to the generation of the human phosphoproteome: a global weblogo analysis. Biomolecular Concepts, 2010, 1, 185-195.	2.2	20
31	Chapter 7 Analysis of Tyrosineâ€Phosphorylated Proteins in Rat Brain Mitochondria. Methods in Enzymology, 2009, 457, 117-136.	1.0	3
32	Functional Complementation in Yeast Allows Molecular Characterization of Missense Argininosuccinate Lyase Mutations. Journal of Biological Chemistry, 2009, 284, 28926-28934.	3.4	30
33	Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 847-859.	4.1	160
34	Effect of 4-Fluoro-L-proline on the SH3 Binding Affinity. Advances in Experimental Medicine and Biology, 2009, 611, 499-500.	1.6	1
35	Introduction of N-alkyl Residues in Proline-rich Peptides: Effect on SH3 Binding Affinity and Peptide Conformation. Advances in Experimental Medicine and Biology, 2009, 611, 65-66.	1.6	0
36	Identification of new tyrosine phosphorylated proteins in rat brain mitochondria. FEBS Letters, 2008, 582, 1104-1110.	2.8	54

Luca Cesaro

#	Article	IF	CITATIONS
37	Mass Spectrometry Analysis of a Protein Kinase CK2Î ² Subunit Interactome Isolated from Mouse Brain by Affinity Chromatography. Journal of Proteome Research, 2008, 7, 990-1000.	3.7	33
38	Argininosuccinate lyase deficiency: mutational spectrum in Italian patients and identification of a novelASLpseudogene. Human Mutation, 2007, 28, 694-702.	2.5	46
39	Spatial Conformation and Topography of the Tyrosine Aromatic Ring in Substrate Recognition by Protein Tyrosine Kinases. Journal of Medicinal Chemistry, 2006, 49, 1916-1924.	6.4	10
40	Protein kinase CK2: a newcomer in the †druggable kinome'. Biochemical Society Transactions, 2006, 34, 1303-1306.	3.4	72
41	4-Fluoroproline derivative peptides: effect on PPII conformation and SH3 affinity. Journal of Peptide Science, 2006, 12, 462-471.	1.4	21
42	Generation of protein kinase Ck1α mutants which discriminate between canonical and non-canonical substrates. Biochemical Journal, 2005, 391, 417-424.	3.7	29
43	Unique Substrate Specificity of Anaplastic Lymphoma Kinase (ALK):  Development of Phosphoacceptor Peptides for the Assay of ALK Activity. Biochemistry, 2005, 44, 8533-8542.	2.5	53
44	Expression, purification, and inhibition of human RET tyrosine kinase. Protein Expression and Purification, 2005, 41, 177-185.	1.3	30
45	Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. Journal of Clinical Investigation, 2005, 115, 369-378.	8.2	192
46	Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. Journal of Clinical Investigation, 2005, 115, 369-378.	8.2	117
47	Optimization of Protein Kinase CK2 Inhibitors Derived from 4,5,6,7-Tetrabromobenzimidazole. Journal of Medicinal Chemistry, 2004, 47, 6239-6247.	6.4	168
48	Conformational constraints of tyrosine in protein tyrosine kinase substrates: Information about preferred bioactive side-chain orientation. Biopolymers, 2003, 71, 478-488.	2.4	10
49	A noncanonical sequence phosphorylated by casein kinase 1 in Â-catenin may play a role in casein kinase 1 targeting of important signaling proteins. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10193-10200.	7.1	127
50	Tyrosine phosphorylation of protein kinase CK2 by Src-related tyrosine kinases correlates with increased catalytic activity. Biochemical Journal, 2003, 372, 841-849.	3.7	56
51	Structure–function analysis of yeast piD261/Bud32, an atypical protein kinase essential for normal cell life. Biochemical Journal, 2002, 364, 457-463.	3.7	40
52	Specific monitoring of Syk protein kinase activity by peptide substrates including constrained analogs of tyrosine. FEBS Letters, 2002, 523, 48-52.	2.8	11
53	Distribution of protein disulphide isomerase in rat liver mitochondria. Biochemical Journal, 2001, 356, 567.	3.7	34
54	Autocatalytic tyrosine-phosphorylation of protein kinase CK2 α and α′ subunits: implication of Tyr182. Biochemical Journal. 2001. 357. 563.	3.7	30

LUCA CESARO

#	Article	IF	CITATIONS
55	Autocatalytic tyrosine-phosphorylation of protein kinase CK2 α and α′ subunits: implication of Tyr182. Biochemical Journal, 2001, 357, 563-567.	3.7	36
56	Generation of mutants of CK2α which are dependent on the β-subunit for catalytic activity. Molecular and Cellular Biochemistry, 2001, 227, 13-19.	3.1	9
57	Isolation, purification, and characterization of a rat liver mitochondrial protein disulfide isomerase. Free Radical Biology and Medicine, 2000, 28, 266-272.	2.9	18
58	Tyrosine Versus Serine/Threonine Phosphorylation by Protein Kinase Casein Kinase-2. Journal of Biological Chemistry, 1999, 274, 29260-29265.	3.4	60
59	A multifunctional network of basic residues confers unique properties to protein kinase CK2. Molecular and Cellular Biochemistry, 1999, 191, 13-19.	3.1	19
60	A multifunctional network of basic residues confers unique properties to protein kinase CK2. , 1999, , 13-19.		1
61	Linear and cyclic peptides as substrates for Lyn tyrosine kinase. , 1998, 4, 33-45.		2
62	Spontaneous Autophosphorylation of Lyn Tyrosine Kinase at both Its Activation Segment and C-Terminal Tail Confers Altered Substrate Specificityâ€,‡. Biochemistry, 1998, 37, 1438-1446.	2.5	34
63	Isolation from Spleen of a 57-kDa Protein Substrate of the Tyrosine Kinase Lyn. Identification as a Protein Related to Protein Disulfide-Isomerase and Localisation of the Phosphorylation Sites. FEBS Journal, 1996, 235, 18-25.	0.2	42
64	A Comparative study of the Phosphotyrosyl Phosphatase Specificity of Protein Phosphatase Type 2A and Phosphotyrosyl Phosphatase Type 1B Using Phosphopeptides and the Phosphoproteins p50/HS1, c-Fgr and Lyn. FEBS Journal, 1996, 236, 548-557.	0.2	17
65	An Exploration of the Effects of Constraints on the Phosphorylation of Synthetic Protein Tyrosine Kinase Peptide Substrates. Journal of Peptide Science, 1996, 2, 325-338.	1.4	14
66	Different Susceptibility of Protein Kinases to Staurosporine Inhibition. Kinetic Studies and Molecular Bases for the Resistance of Protein Kinase CK2. FEBS Journal, 1995, 234, 317-322.	0.2	257
67	Linear and cyclic synthetic peptides related to the main autophosphorylation site of the Src tyrosine kinases as substrates and inhibitors of Lyn ^{â€} . International Journal of Peptide and Protein Research, 1995, 45, 529-539.	0.1	13
68	Synthetic Tyrâ€phospho and nonâ€hydrolyzable phosphonopeptides as PTKs and TCâ€PTP inhibitors*. International Journal of Peptide and Protein Research, 1995, 46, 535-546.	0.1	5
69	Phosphorylated residues as specificity determinants for an acidophilic protein tyrosine kinase. FEBS Letters, 1993, 330, 141-145.	2.8	24
70	Spleen protein tyrosine kinases TPK-IIB and CSK display different immunoreactivity and opposite specificities toward c-src-derived peptides. FEBS Letters, 1992, 313, 291-294.	2.8	33