Zijun Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9636755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nickel Nitrate Hydroxide Holey Nanosheets for Efficient Oxygen Evolution Electrocatalysis in Alkaline Condition. Electrocatalysis, 2022, 13, 37-46.	1.5	4
2	Construction of organic–inorganic hybrid photoanodes with metal phthalocyanine complexes to improve photoelectrochemical water splitting performance. New Journal of Chemistry, 2022, 46, 9111-9118.	1.4	6
3	Vanadium nitride nanoparticle decorated N-doped carbon nanotube/N-doped carbon nanosheet hybrids <i>via</i> a C ₃ N ₄ self-sacrificing method for electrochemical capacitors. RSC Advances, 2022, 12, 15354-15360.	1.7	10
4	Twoâ€Dimensional Metalâ€Halide Perovskiteâ€based Optoelectronics: Synthesis, Structure, Properties and Applications. Energy and Environmental Materials, 2021, 4, 46-64.	7.3	34
5	Self-rectifying and forming-free nonvolatile memory behavior in single-crystal TiO2 nanowire memory device. Journal of Alloys and Compounds, 2021, 858, 157749.	2.8	9
6	Fabrication of NiO–carbon nanotube/sulfur composites for lithium-sulfur battery application. RSC Advances, 2021, 11, 10753-10759.	1.7	15
7	Enhanced Photoelectrochemical Performance of Hematite Photoanode by Decorating NiCoP Nanoparticles Through a Facile Spin Coating Method. Catalysis Letters, 2021, 151, 3135-3144.	1.4	4
8	Assembly of 5â€Aminoimidazoles via Palladium atalysed Double Isocyanide Insertion Reaction. Advanced Synthesis and Catalysis, 2021, 363, 2762-2766.	2.1	15
9	The in-built bionic "MoFe cofactor―in Fe-doped two-dimensional MoTe ₂ nanosheets for boosting the photocatalytic nitrogen reduction performance. Journal of Materials Chemistry A, 2020, 8, 13038-13048.	5.2	30
10	Preparation of (Ti, Zr) co-doped hematite photoanode for enhanced photoelectrochemical water splitting. Chemical Physics Letters, 2020, 754, 137736.	1.2	22
11	Highly efficient simultaneous hydrogen evolution and benzaldehyde production using cadmium sulfide nanorods decorated with small cobalt nanoparticles under visible light. Journal of Catalysis, 2018, 357, 147-153.	3.1	93
12	Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nature Communications, 2018, 9, 4177.	5.8	171
13	1D Colloidal Heteroâ€Nanomaterials with Programmed Semiconductor Morphology and Metal Location for Enhancing Solar Energy Conversion. Small, 2017, 13, 1602629.	5.2	16
14	Black Phosphorus Revisited: A Missing Metalâ€Free Elemental Photocatalyst for Visible Light Hydrogen Evolution. Advanced Materials, 2017, 29, 1605776.	11.1	405
15	Cobalt nitride as an efficient cocatalyst on CdS nanorods for enhanced photocatalytic hydrogen production in water. Catalysis Science and Technology, 2017, 7, 1515-1522.	2.1	63
16	Improving the water splitting performance of nickel electrodes by optimizing their pore structure using a phase inversion method. Catalysis Science and Technology, 2017, 7, 3056-3064.	2.1	18
17	A facile mechanochemical route to a covalently bonded graphitic carbon nitride (g-C ₃ N ₄) and fullerene hybrid toward enhanced visible light photocatalytic hydrogen production. Nanoscale, 2017, 9, 5615-5623.	2.8	89
18	Incorporating a molecular co-catalyst with a heterogeneous semiconductor heterojunction photocatalyst: Novel mechanism with two electron-transfer pathways for enhanced solar hydrogen production. Journal of Catalysis, 2017, 353, 274-285.	3.1	35

Zijun Sun

#	Article	IF	CITATIONS
19	Noble Metal-Free Copper Hydroxide as an Active and Robust Electrocatalyst for Water Oxidation at Weakly Basic pH. ACS Sustainable Chemistry and Engineering, 2016, 4, 2593-2600.	3.2	66
20	Synergistic Effect of a Molecular Cocatalyst and a Heterojunction in a 1 D Semiconductor Photocatalyst for Robust and Highly Efficient Solar Hydrogen Production. ChemSusChem, 2016, 9, 3084-3092.	3.6	32
21	Enhanced photocatalytic H ₂ production on cadmium sulfide photocatalysts using nickel nitride as a novel cocatalyst. Journal of Materials Chemistry A, 2016, 4, 13289-13295.	5.2	116
22	A Copper Porphyrinâ€Based Conjugated Mesoporous Polymerâ€Derived Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution. ChemSusChem, 2016, 9, 2365-2373.	3.6	80
23	Enhanced photocatalytic H ₂ production on CdS nanorods with simple molecular bidentate cobalt complexes as cocatalysts under visible light. Dalton Transactions, 2016, 45, 12897-12905.	1.6	29
24	Ternary metal phosphide nanosheets as a highly efficient electrocatalyst for water reduction to hydrogen over a wide pH range from 0 to 14. Journal of Materials Chemistry A, 2016, 4, 10195-10202.	5.2	117
25	Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light. Nanoscale, 2016, 8, 4748-4756.	2.8	127
26	Cuprous oxide thin film directly electrodeposited from a simple copper salt on conductive electrode for efficient oxygen evolution reaction. Electrochimica Acta, 2016, 187, 381-388.	2.6	23
27	Core–shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional photocatalytic hydrogen production under visible light. Journal of Materials Chemistry A, 2016, 4, 1598-1602.	5.2	108
28	In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions. Chemical Communications, 2016, 52, 5546-5549.	2.2	74
29	Cadmium Sulfide Nanorods Decorated with Copper Sulfide via Oneâ€Step Cation Exchange Approach for Enhanced Photocatalytic Hydrogen Evolution under Visible Light. ChemCatChem, 2016, 8, 157-162.	1.8	39
30	An iron porphyrin-based conjugated network wrapped around carbon nanotubes as a noble-metal-free electrocatalyst for efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2016, 3, 821-827.	3.0	39
31	Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-Edge X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 831-840.	1.5	146
32	A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. Journal of Materials Chemistry A, 2016, 4, 675-683.	5.2	214
33	Covalent Cobalt Porphyrin Framework on Multiwalled Carbon Nanotubes for Efficient Water Oxidation at Low Overpotential. Chemistry of Materials, 2015, 27, 4586-4593.	3.2	108
34	Earth-Abundant Copper-Based Bifunctional Electrocatalyst for Both Catalytic Hydrogen Production and Water Oxidation. ACS Catalysis, 2015, 5, 1530-1538.	5.5	150
35	Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation. Electrochimica Acta, 2015, 160, 202-208.	2.6	110
36	Robust and highly active copper-based electrocatalyst for hydrogen production at low overpotential in neutral water. Chemical Communications, 2015, 51, 12954-12957.	2.2	71

Zijun Sun

#	Article	IF	CITATIONS
37	High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors. Chemical Communications, 2015, 51, 11626-11629.	2.2	182
38	Molecular cobalt–salen complexes as novel cocatalysts for highly efficient photocatalytic hydrogen production over a CdS nanorod photosensitizer under visible light. Journal of Materials Chemistry A, 2015, 3, 15729-15737.	5.2	83
39	MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light. Journal of Materials Chemistry A, 2015, 3, 16941-16947.	5.2	211
40	Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni ₂ P cocatalysts. Energy and Environmental Science, 2015, 8, 2668-2676.	15.6	519
41	Copper phosphide modified cadmium sulfide nanorods as a novel p–n heterojunction for highly efficient visible-light-driven hydrogen production in water. Journal of Materials Chemistry A, 2015, 3, 10243-10247.	5.2	175
42	Pyrolyzed cobalt porphyrin-modified carbon nanomaterial as an active catalyst for electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2015, 40, 6538-6545.	3.8	45
43	Cobalt–Salen Complexes as Catalyst Precursors for Electrocatalytic Water Oxidation at Low Overpotential. Journal of Physical Chemistry C, 2015, 119, 8998-9004.	1.5	60
44	Enhanced photocatalytic hydrogen production in water under visible light using noble metal-free ferrous phosphide as an active cocatalyst. Catalysis Science and Technology, 2015, 5, 4964-4967.	2.1	83
45	Microwave-assisted synthesis of hematite/activated graphene composites with superior performance for photocatalytic reduction of Cr(<scp>vi</scp>). RSC Advances, 2015, 5, 81438-81444.	1.7	16
46	A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0–14. Journal of Materials Chemistry A, 2015, 3, 1941-1946.	5.2	138
47	Direct growth of porous crystalline NiCo ₂ O ₄ nanowire arrays on a conductive electrode for high-performance electrocatalytic water oxidation. Journal of Materials Chemistry A, 2014, 2, 20823-20831.	5.2	111
48	Reversible Mechanochromic Luminescence at Room Temperature in Cationic Platinum(II) Terpyridyl Complexes. Inorganic Chemistry, 2014, 53, 3338-3344.	1.9	75
49	Green Cobalt Oxide (CoO _{<i>x</i>}) Film with Nanoribbon Structures Electrodeposited from the BF ₂ -Annulated Cobaloxime Precursor for Efficient Water Oxidation. ACS Applied Materials & Interfaces, 2014, 6, 10929-10934.	4.0	47
50	Enhanced visible light-driven hydrogen production from water by a noble-metal-free system containing organic dye-sensitized titanium dioxide loaded with nickel hydroxide as the cocatalyst. Applied Catalysis B: Environmental, 2014, 160-161, 173-178.	10.8	76
51	Nanostructured copper oxide electrodeposited from copper(II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction. Electrochemistry Communications, 2014, 46, 1-4.	2.3	154
52	Facile deposition of nanostructured cobalt oxide catalysts from molecular cobaloximes for efficient water oxidation. Physical Chemistry Chemical Physics, 2013, 15, 12534.	1.3	41