Jiuk Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9636353/publications.pdf Version: 2024-02-01

361296 552653 2,001 25 20 26 citations h-index g-index papers 26 26 26 2905 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-performance transparent nanocomposites based on robust organic nanoparticles for optoelectronic applications. Progress in Organic Coatings, 2022, 164, 106699.	1.9	1
2	Selfâ€Healable, Recyclable Anisotropic Conductive Films of Liquid Metalâ€Gelatin Hybrids for Soft Electronics. Advanced Electronic Materials, 2022, 8, .	2.6	16
3	Liquid Metalâ€Based Soft Electronics for Wearable Healthcare. Advanced Healthcare Materials, 2021, 10, e2002280.	3.9	116
4	Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles. Science Advances, 2021, 7, .	4.7	71
5	Recent advances in electronic devices for monitoring and modulation of brain. Nano Research, 2021, 14, 3070-3095.	5.8	18
6	3D Heterogeneous Device Arrays for Multiplexed Sensing Platforms Using Transfer of Perovskites. Advanced Materials, 2021, 33, e2101093.	11.1	33
7	Multimodal Digital Xâ€ray Scanners with Synchronous Mapping of Tactile Pressure Distributions using Perovskites. Advanced Materials, 2021, 33, e2008539.	11.1	36
8	Recent progress on wearable point-of-care devices for ocular systems. Lab on A Chip, 2021, 21, 1269-1286.	3.1	27
9	Mechanoluminescent, Air-Dielectric MoS ₂ Transistors as Active-Matrix Pressure Sensors for Wide Detection Ranges from Footsteps to Cellular Motions. Nano Letters, 2020, 20, 66-74.	4.5	80
10	Amorphous Oxide Semiconductor Transistors with Air Dielectrics for Transparent and Wearable Pressure Sensor Arrays. Advanced Materials Technologies, 2020, 5, 1900928.	3.0	42
11	Integration of Transparent Supercapacitors and Electrodes Using Nanostructured Metallic Glass Films for Wirelessly Rechargeable, Skin Heat Patches. Nano Letters, 2020, 20, 4872-4881.	4.5	56
12	Motion Detection Using Tactile Sensors Based on Pressure-Sensitive Transistor Arrays. Sensors, 2020, 20, 3624.	2.1	33
13	Platform for wireless pressure sensing with built-in battery and instant visualization. Nano Energy, 2019, 62, 230-238.	8.2	43
14	Haze-free transparent electrodes using metal nanofibers with carbon shells for high-temperature stability. Applied Surface Science, 2019, 483, 1101-1109.	3.1	17
15	Humanâ€Interactive, Activeâ€Matrix Displays for Visualization of Tactile Pressures. Advanced Materials Technologies, 2019, 4, 1900082.	3.0	53
16	Implantation of electronic visual prosthesis for blindness restoration. Optical Materials Express, 2019, 9, 3878.	1.6	32
17	Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Science Advances, 2018, 4, eaap9841.	4.7	465
18	Biomimetic Chitin–Silk Hybrids: An Optically Transparent Structural Platform for Wearable Devices and Advanced Electronics. Advanced Functional Materials, 2018, 28, 1705480.	7.8	74

Jiuk Jang

#	Article	IF	CITATIONS
19	High Dielectric Performances of Flexible and Transparent Cellulose Hybrid Films Controlled by Multidimensional Metal Nanostructures. Advanced Materials, 2017, 29, 1700538.	11.1	106
20	Stretchable electronic devices using graphene and its hybrid nanostructures. FlatChem, 2017, 3, 71-91.	2.8	34
21	Multi-dimensional carbon nanofibers for supercapacitor electrodes. Journal of Electroceramics, 2017, 38, 43-50.	0.8	13
22	Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Materials, 2017, 9, e432-e432.	3.8	151
23	Smart Sensor Systems for Wearable Electronic Devices. Polymers, 2017, 9, 303.	2.0	185
24	Nanomaterial-based stretchable and transparent electrodes. Journal of Information Display, 2016, 17, 131-141.	2.1	33
25	Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Classes with Superior Mechanical Properties and Thermal Stability, Nano Letters, 2016, 16, 471-478.	4.5	265