Jiuk Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9636353/publications.pdf

Version: 2024-02-01

361413 552781 2,001 25 20 26 citations h-index g-index papers 26 26 26 2905 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Science Advances, 2018, 4, eaap9841.	10.3	465
2	Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability. Nano Letters, 2016, 16, 471-478.	9.1	265
3	Smart Sensor Systems for Wearable Electronic Devices. Polymers, 2017, 9, 303.	4.5	185
4	Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Materials, 2017, 9, e432-e432.	7.9	151
5	Liquid Metalâ€Based Soft Electronics for Wearable Healthcare. Advanced Healthcare Materials, 2021, 10, e2002280.	7.6	116
6	High Dielectric Performances of Flexible and Transparent Cellulose Hybrid Films Controlled by Multidimensional Metal Nanostructures. Advanced Materials, 2017, 29, 1700538.	21.0	106
7	Mechanoluminescent, Air-Dielectric MoS ₂ Transistors as Active-Matrix Pressure Sensors for Wide Detection Ranges from Footsteps to Cellular Motions. Nano Letters, 2020, 20, 66-74.	9.1	80
8	Biomimetic Chitin–Silk Hybrids: An Optically Transparent Structural Platform for Wearable Devices and Advanced Electronics. Advanced Functional Materials, 2018, 28, 1705480.	14.9	74
9	Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles. Science Advances, 2021, 7, .	10.3	71
10	Integration of Transparent Supercapacitors and Electrodes Using Nanostructured Metallic Glass Films for Wirelessly Rechargeable, Skin Heat Patches. Nano Letters, 2020, 20, 4872-4881.	9.1	56
11	Humanâ€Interactive, Activeâ€Matrix Displays for Visualization of Tactile Pressures. Advanced Materials Technologies, 2019, 4, 1900082.	5.8	53
12	Platform for wireless pressure sensing with built-in battery and instant visualization. Nano Energy, 2019, 62, 230-238.	16.0	43
13	Amorphous Oxide Semiconductor Transistors with Air Dielectrics for Transparent and Wearable Pressure Sensor Arrays. Advanced Materials Technologies, 2020, 5, 1900928.	5.8	42
14	Multimodal Digital Xâ€ray Scanners with Synchronous Mapping of Tactile Pressure Distributions using Perovskites. Advanced Materials, 2021, 33, e2008539.	21.0	36
15	Stretchable electronic devices using graphene and its hybrid nanostructures. FlatChem, 2017, 3, 71-91.	5.6	34
16	Nanomaterial-based stretchable and transparent electrodes. Journal of Information Display, 2016, 17, 131-141.	4.0	33
17	Motion Detection Using Tactile Sensors Based on Pressure-Sensitive Transistor Arrays. Sensors, 2020, 20, 3624.	3.8	33
18	3D Heterogeneous Device Arrays for Multiplexed Sensing Platforms Using Transfer of Perovskites. Advanced Materials, 2021, 33, e2101093.	21.0	33

#	Article	IF	CITATIONS
19	Implantation of electronic visual prosthesis for blindness restoration. Optical Materials Express, 2019, 9, 3878.	3.0	32
20	Recent progress on wearable point-of-care devices for ocular systems. Lab on A Chip, 2021, 21, 1269-1286.	6.0	27
21	Recent advances in electronic devices for monitoring and modulation of brain. Nano Research, 2021, 14, 3070-3095.	10.4	18
22	Haze-free transparent electrodes using metal nanofibers with carbon shells for high-temperature stability. Applied Surface Science, 2019, 483, 1101-1109.	6.1	17
23	Selfâ€Healable, Recyclable Anisotropic Conductive Films of Liquid Metalâ€Gelatin Hybrids for Soft Electronics. Advanced Electronic Materials, 2022, 8, .	5.1	16
24	Multi-dimensional carbon nanofibers for supercapacitor electrodes. Journal of Electroceramics, 2017, 38, 43-50.	2.0	13
25	High-performance transparent nanocomposites based on robust organic nanoparticles for optoelectronic applications. Progress in Organic Coatings, 2022, 164, 106699.	3.9	1