Long Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9636200/publications.pdf

Version: 2024-02-01

19 papers	663 citations	933447 10 h-index	19 g-index
19	19	19	729
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 650598.	4.1	208
2	The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices. Frontiers in Bioengineering and Biotechnology, 2020, 8, 910.	4.1	92
3	A reactive oxygen species–responsive prodrug micelle with efficient cellular uptake and excellent bioavailability. Journal of Materials Chemistry B, 2018, 6, 1076-1084.	5.8	57
4	Cinnamaldehyde-Based Poly(ester-thioacetal) To Generate Reactive Oxygen Species for Fabricating Reactive Oxygen Species-Responsive Nanoparticles. Biomacromolecules, 2018, 19, 4658-4667.	5.4	53
5	A reactive oxygen species (ROS)-responsive low molecular weight gel co-loaded with doxorubicin and Zn(<scp>ii</scp>) phthalocyanine tetrasulfonic acid for combined chemo-photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 9157-9164.	5.8	50
6	Polymeric nanoparticles responsive to intracellular ROS for anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2019, 181, 252-260.	5.0	50
7	Fabrication of Polymeric Micelles with Aggregation-Induced Emission and Forster Resonance Energy Transfer for Anticancer Drug Delivery. Bioconjugate Chemistry, 2017, 28, 1944-1954.	3.6	36
8	Gelation properties and glucose-sensitive behavior of phenylboronic acid based low-molecular-weight organogels. Tetrahedron, 2015, 71, 2079-2088.	1.9	23
9	Fluorescence Resonance Energy Transfer Visualization of Molecular Delivery from Polymeric Micelles. Journal of Biomedical Nanotechnology, 2018, 14, 1308-1316.	1.1	17
10	CeO2 QDs anchored on MnO2 nanoflowers with multiple synergistic effects for amplified tumour therapy. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112103.	5.0	14
11	Substitution of Percutaneous Ethanol Injection with a Low Molecular Weight Peptide Gel Mimicking Chemoembolization for Cancer Therapy. Nanotheranostics, 2017, 1, 313-325.	5.2	8
12	Low Molecular Weight Hydrogel for Super Efficient Separation of Small Organic Molecules Based on Size Effect. ACS Sustainable Chemistry and Engineering, 2019, 7, 11062-11068.	6.7	8
13	Pranoprofen Nanoparticles With Poly(L-Lactide)-b-Poly(Ethylene Glycol)-b-Poly(L-Lactide) as the Matrix Toward Improving Ocular Anti-inflammation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 581621.	4.1	8
14	Facile construction of a family of supramolecular gels with good levofloxacin hydrochloride loading capacity. RSC Advances, 2021, 11, 12641-12648.	3.6	8
15	Blood circulation stable doxorubicin prodrug nanoparticles containing hydrazone and thioketal moieties for antitumor chemotherapy. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111632.	5.0	8
16	Construction of Polymeric Micelles for Improving Cancer Chemotherapy by Promoting the Production of Intracellular Reactive Oxygen Species and Selfâ€Accelerating Drug Release. ChemistrySelect, 2021, 6, 3277-3285.	1.5	7
17	Bowl-like mesoporous polydopamine with size exclusion for highly selective recognition of endogenous glycopeptides. Talanta, 2021, 233, 122468.	5.5	7
18	Multi-Activated Polymeric Micelles with Charge-Conversion and ROS-Controlled Drug Release for Efficient Cancer Therapy. Journal of Biomedical Nanotechnology, 2017, 13, 946-959.	1.1	7

#	Article	IF	CITATIONS
19	Magnetic composites Fe 3 O 4 @SiO 2 @PILs as sorbents for efficient denitrogenation of fuel oil. Micro and Nano Letters, 2019, 14, 1287-1292.	1.3	2