Chen Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9635489/publications.pdf

Version: 2024-02-01

1125743 840776 13 522 11 13 citations h-index g-index papers 13 13 13 781 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Flexible Amoxicillin-Grafted Bacterial Cellulose Sponges for Wound Dressing: In Vitro and in Vivo Evaluation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5862-5870.	8.0	187
2	Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. International Journal of Biological Macromolecules, 2019, 133, 148-155.	7.5	82
3	Green and Facile Preparation of Chitosan Sponges as Potential Wound Dressings. ACS Sustainable Chemistry and Engineering, 2018, 6, 9145-9152.	6.7	65
4	Acid hydrotropic fractionation of switchgrass at atmospheric pressure using maleic acid in comparison with p-TsOH: Advantages of lignin esterification. Industrial Crops and Products, 2021, 159, 113017.	5.2	39
5	Morphological, Release and Antibacterial Performances of Amoxicillin-Loaded Cellulose Aerogels. Molecules, 2018, 23, 2082.	3.8	24
6	Structural characterization and antioxidant activity of water-soluble lignin-carbohydrate complexes (LCCs) isolated from wheat straw. International Journal of Biological Macromolecules, 2020, 161, 315-324.	7. 5	23
7	Facile and Green Preparation of Pectin/Cellulose Composite Films with Enhanced Antibacterial and Antioxidant Behaviors. Polymers, 2019, $11,57$.	4.5	22
8	UV-mediated synthesis of carboxymethyl cellulose/poly-N-isopropylacrylamide composite hydrogels with triple stimuli-responsive swelling performances. International Journal of Biological Macromolecules, 2020, 161, 1140-1148.	7.5	18
9	Enhancement of the antioxidant abilities of lignin and lignin-carbohydrate complex from wheat straw by moderate depolymerization via LiCl/DMSO solvent catalysis. International Journal of Biological Macromolecules, 2021, 184, 369-379.	7.5	18
10	Antibacterial activity and long-term stable antibacterial performance of nisin grafted magnetic GO nanohybrids. Materials Science and Engineering C, 2020, 111, 110809.	7.3	12
11	Efficient isolation of organosolv lignin-carbohydrate complexes (LCC) with high antioxidative activity via introducing LiCl/DMSO dissolving. International Journal of Biological Macromolecules, 2021, 181, 752-761.	7. 5	12
12	Facile Construction of Functionalized GO Nanocomposites with Enhanced Antibacterial Activity. Nanomaterials, 2019, 9, 913.	4.1	10
13	Maleic acid hydrotropic fractionation of wheat straw to facilitate valueâ€added multiâ€product biorefinery at atmospheric pressure. GCB Bioenergy, 2021, 13, 1407-1424.	5. 6	10