Richard Frankham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9634624/publications.pdf

Version: 2024-02-01

71 papers 19,103 citations

46 h-index

50276

95266 68 g-index

76 all docs 76
docs citations

76 times ranked 14580 citing authors

#	Article	IF	CITATIONS
1	Evaluation of proposed genetic goals and targets for the Convention on Biological Diversity. Conservation Genetics, 2022, 23, 865-870.	1.5	14
2	Integrating biobanking minimises inbreeding and produces significant cost benefits for a threatened frog captive breeding programme. Conservation Letters, 2021, 14, e12776.	5.7	33
3	Integrating biobanking could produce significant cost benefits and minimise inbreeding for Australian amphibian captive breeding programs. Reproduction, Fertility and Development, 2021, 33, 573-587.	0.4	15
4	Suggested improvements to proposed genetic indicator for CBD. Conservation Genetics, 2021, 22, 531-532.	1.5	14
5	Genetic rescue: A critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biological Conservation, 2020, 251, 108784.	4.1	130
6	Rapid reshaping: the evolution of morphological changes in an introduced beach daisy. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20181713.	2.6	18
7	A Practical Guide for Genetic Management of Fragmented Animal and Plant Populations. , 2019, , .		55
8	Call for a Paradigm Shift in the Genetic Management of Fragmented Populations. Conservation Letters, 2018, 11, e12412.	5.7	283
9	Conservation and Genetics. Yale Journal of Biology and Medicine, 2018, 91, 491-501.	0.2	6
10	Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis. Biological Conservation, 2016, 195, 33-36.	4.1	88
11	Genetic rescue of small inbred populations: metaâ€analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 2015, 24, 2610-2618.	3.9	597
12	Species concepts for conservation – Reply to Russello and Amato. Biological Conservation, 2014, 170, 334-335.	4.1	3
13	Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 2014, 170, 56-63.	4.1	729
14	50/500 rules need upward revision to 100/1000 – Response to Franklin et al Biological Conservation, 2014, 176, 286.	4.1	11
15	Inbreeding and Outbreeding. , 2013, , 245-252.		8
16	50/500 rule and minimum viable populations: response to Jamieson and Allendorf. Trends in Ecology and Evolution, 2013, 28, 187-188.	8.7	37
17	High genetic diversity is not essential for successful introduction. Ecology and Evolution, 2013, 3, 4501-4517.	1.9	66
18	How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination. Heredity, 2012, 108, 167-178.	2.6	77

#	Article	IF	Citations
19	Implications of different species concepts for conserving biodiversity. Biological Conservation, 2012, 153, 25-31.	4.1	263
20	Minimum viable population size: not magic, but necessary. Trends in Ecology and Evolution, 2011, 26, 619-620.	8.7	30
21	Predicting the Probability of Outbreeding Depression. Conservation Biology, 2011, 25, 465-475.	4.7	635
22	Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications, 2011, 4, 709-725.	3.1	661
23	Where are we in conservation genetics and where do we need to go?. Conservation Genetics, 2010, 11, 661-663.	1.5	203
24	Estimating the Potential for Adaptation of Corals to Climate Warming. PLoS ONE, 2010, 5, e9751.	2.5	114
25	Widespread selective sweeps affecting microsatellites in Drosophila populations adapting to captivity: Implications for captive breeding programs. Biological Conservation, 2010, 143, 1842-1849.	4.1	23
26	Challenges and opportunities of genetic approaches to biological conservation. Biological Conservation, 2010, 143, 1919-1927.	4.1	420
27	Genetic Architecture of Reproductive Fitness and its Consequences. , 2009, , 15-39.		31
28	Genetic adaptation to captivity in species conservation programs. Molecular Ecology, 2008, 17, 325-333.	3.9	472
29	Low genetic diversity in the bottlenecked population of endangered non-native banteng in northern Australia. Molecular Ecology, 2007, 16, 2998-3008.	3.9	27
30	Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biological Conservation, 2006, 133, 42-51.	4.1	480
31	Does inbreeding distort sex-ratios?. Conservation Genetics, 2006, 7, 879-893.	1.5	20
32	Genetics and extinction. Biological Conservation, 2005, 126, 131-140.	4.1	1,754
33	Comparative losses of quantitative and molecular genetic variation in finite populations of Drosophila melanogaster. Genetical Research, 2005, 85, 47-55.	0.9	51
34	Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15261-15264.	7.1	958
35	Correlations among Extinction Risks Assessed by Different Systems of Threatened Species Categorization. Conservation Biology, 2004, 18, 1624-1635.	4.7	33
36	Large Estimates of Minimum Viable Population Sizes. Conservation Biology, 2004, 18, 1179-1179.	4.7	0

#	Article	IF	CITATIONS
37	Does Inbreeding and Loss of Genetic Diversity Decrease Disease Resistance?. Conservation Genetics, 2004, 5, 439-448.	1.5	300
38	What are the best correlates of predicted extinction risk?. Biological Conservation, 2004, 118, 513-520.	4.1	219
39	Dynamics of genetic adaptation to captivity. Conservation Genetics, 2003, 4, 189-197.	1.5	81
40	Inbreeding and extinction: Effects of rate of inbreeding. Conservation Genetics, 2003, 4, 405-410.	1.5	136
41	Title is missing!. Conservation Genetics, 2003, 4, 595-604.	1.5	150
42	The frequency and severity of catastrophic die-offs in vertebrates. Animal Conservation, 2003, 6, 109-114.	2.9	111
43	Correlation between Fitness and Genetic Diversity. Conservation Biology, 2003, 17, 230-237.	4.7	1,891
44	Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biological Conservation, 2003, 113, 23-34.	4.1	373
45	Critiques of PVA Ask the Wrong Questions: Throwing the Heuristic Baby Out with the Numerical Bath Water. Conservation Biology, 2002, 16, 262-263.	4.7	107
46	Inbreeding and extinction: The effect of environmental stress and lineage. Conservation Genetics, 2002, 3, 301-307.	1.5	114
47	Rapid genetic deterioration in captive populations: Causes and conservation implications. Conservation Genetics, 2002, 3, 277-288.	1.5	173
48	Contribution of Inbreeding to Extinction Risk in Threatened Species. Ecology and Society, 2002, 6, .	0.9	177
49	Population viability analyses on a cycling population: a cautionary tale. Biological Conservation, 2001, 97, 61-69.	4.1	36
50	Inbreeding and extinction: Effects of purging. Conservation Genetics, 2001, 2, 279-284.	1.5	104
51	HOW CLOSELY CORRELATED ARE MOLECULAR AND QUANTITATIVE MEASURES OF GENETIC VARIATION? A META-ANALYSIS. Evolution; International Journal of Organic Evolution, 2001, 55, 1095-1103.	2.3	633
52	Inbreeding and Extinction in Island Populations: Reply to Elgar and Clode. Conservation Biology, 2001, 15, 287-289.	4.7	11
53	Sir Otto Frankel: Memories and Tributes. Conservation Biology, 2000, 14, 582-583.	4.7	2
54	Predictive accuracy of population viability analysis in conservation biology. Nature, 2000, 404, 385-387.	27.8	517

#	Article	IF	CITATIONS
55	Title is missing!. Conservation Genetics, 2000, 1, 33-43.	1.5	90
56	Comparison of the population viability analysis packages GAPPS, INMAT, RAMAS and VORTEX for the whooping crane (Grus americana). Animal Conservation, 1999, 2, 23-31.	2.9	48
57	Quantitative genetics in conservation biology. Genetical Research, 1999, 74, 237-244.	0.9	97
58	Inbreeding leads to extinction. Nature, 1998, 392, 441-442.	27.8	202
59	Inbreeding and Extinction: Island Populations. Conservation Biology, 1998, 12, 665-675.	4.7	442
60	Does population viability analysis software predict the behaviour of real populations? A retrospective study on the Lord Howe Island woodhen Tricholimnas sylvestris (Sclater). Biological Conservation, 1997, 82, 119-128.	4.1	103
61	How secure is the Lord Howe Island Woodhen? A population viability analysis using VORTEX. Pacific Conservation Biology, 1997, 3, 125.	1.0	25
62	Is Mutation Accumulation a Threat to the Survival of Endangered Populations?. ?Es la Acumulacion de Mutaciones una Amenaza para la Supervivencia de Poblaciones en Peligro?. Conservation Biology, 1997, 11, 1235-1241.	4.7	67
63	Introduction to quantitative genetics (4th edn). Trends in Genetics, 1996, 12, 280.	6.7	294
64	Relationship of Genetic Variation to Population Size in Wildlife. Conservation Biology, 1996, 10, 1500-1508.	4.7	1,208
65	Microsatellite polymorphisms in a wild population of <i>Drosophila melanogaster</i> Research, 1996, 67, 285-290.	0.9	45
66	Inbreeding and Extinction: A Threshold Effect. Conservation Biology, 1995, 9, 792-799.	4.7	482
67	Effective population size/adult population size ratios in wildlife: a review. Genetical Research, 1995, 66, 95-107.	0.9	1,177
68	Modeling Problems in Conservation Genetics Using Captive Drosophila Populations: Consequences of Equalization of Family Sizes. Conservation Biology, 1993, 7, 122-131.	4.7	59
69	Modeling problems in conservation genetics using captiveDrosophila populations: Consequences of equalizing founder representation. Zoo Biology, 1992, 11, 319-332.	1.2	45
70	Modeling problems in conservation genetics using captiveDrosophila populations: Rapid genetic adaptation to captivity. Zoo Biology, 1992, 11, 333-342.	1.2	131
71	Modeling problems in conservation genetics using captiveDrosophila populations: Improvement of reproductive fitness due to immigration of one individual into small partially inbred populations. Zoo Biology, 1992, 11, 343-351.	1.2	96