Juejun Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9633251/publications.pdf

Version: 2024-02-01

204 papers 8,988 citations

51 h-index 90 g-index

208 all docs

208 docs citations

times ranked

208

7629 citing authors

#	Article	IF	CITATIONS
1	On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nature Photonics, 2011, 5, 758-762.	31.4	766
2	Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nature Communications, 2019, 10, 4279.	12.8	349
3	Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology, 2021, 16, 661-666.	31.5	298
4	Integrated flexible chalcogenide glass photonic devices. Nature Photonics, 2014, 8, 643-649.	31.4	291
5	Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics, 2017, 7, 393-420.	6.0	280
6	Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution. Chemistry - A European Journal, 2006, 12, 7942-7947.	3.3	270
7	Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Optics Letters, 2018, 43, 94.	3.3	222
8	Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications, 2021, 12, 1225.	12.8	221
9	A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design. ACS Photonics, 2019, 6, 3196-3207.	6.6	212
10	Chalcogenide glass-on-graphene photonics. Nature Photonics, 2017, 11, 798-805.	31.4	190
11	Passive directional sub-ambient daytime radiative cooling. Nature Communications, 2018, 9, 5001.	12.8	179
12	High-performance and scalable on-chip digital Fourier transform spectroscopy. Nature Communications, 2018, 9, 4405.	12.8	173
13	Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Optics Express, 2007, 15, 2307.	3.4	159
14	Design guidelines for optical resonator biochemical sensors. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1032.	2.1	157
15	Flexible integrated photonics: where materials, mechanics and optics meet [Invited]. Optical Materials Express, 2013, 3, 1313.	3.0	153
16	Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing. ACS Nano, 2014, 8, 6955-6961.	14.6	148
17	Mid-infrared materials and devices on a Si platform for optical sensing. Science and Technology of Advanced Materials, 2014, 15, 014603.	6.1	143
18	Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica, 2019, 6, 473.	9.3	132

#	Article	IF	CITATIONS
19	Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature Communications, 2018, 9, 1481.	12.8	126
20	Ultracompact, broadband slot waveguide polarization splitter. Applied Physics Letters, 2011, 98, .	3.3	120
21	Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. Optics Letters, 2008, 33, 2500.	3. 3	107
22	Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?. Optica, 2018, 5, 1046.	9.3	105
23	Single-Element Diffraction-Limited Fisheye Metalens. Nano Letters, 2020, 20, 7429-7437.	9.1	104
24	Athermal operation of Silicon waveguides: spectral, second order and footprint dependencies. Optics Express, 2010, 18, 17631.	3.4	101
25	Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. Optics Express, 2007, 15, 11798.	3.4	100
26	Angle-selective perfect absorption with two-dimensional materials. Light: Science and Applications, 2016, 5, e16052-e16052.	16.6	94
27	Monolithically integrated stretchable photonics. Light: Science and Applications, 2018, 7, 17138-17138.	16.6	94
28	Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nature Nanotechnology, 2022, 17, 842-848.	31.5	94
29	Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation. ACS Photonics, 2015, 2, 856-863.	6.6	92
30	Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges. Optics Express, 2010, 18, 26728.	3.4	91
31	Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators. Optics Letters, 2013, 38, 1470.	3.3	87
32	Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics, 2020, 9, 3505-3534.	6.0	87
33	Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices. Materials, 2013, 6, 5094-5117.	2.9	82
34	Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photonics Research, 2018, 6, 506.	7.0	78
35	Multifunctional Metasurface Design with a Generative Adversarial Network. Advanced Optical Materials, 2021, 9, 2001433.	7.3	78
36	Myths and truths about optical phase change materials: A perspective. Applied Physics Letters, 2021, 118,	3.3	76

#	Article	IF	CITATIONS
37	Multiâ€Level Electroâ€Thermal Switching of Optical Phaseâ€Change Materials Using Graphene. Advanced Photonics Research, 2021, 2, 2000034.	3.6	7 5
38	Effect of annealing conditions on the physio-chemical properties of spin-coated As_2Se_3 chalcogenide glass films. Optical Materials Express, 2012, 2, 1723.	3.0	73
39	Deep learning modeling approach for metasurfaces with high degrees of freedom. Optics Express, 2020, 28, 31932.	3.4	73
40	Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides. Lab on A Chip, 2013, 13, 2161.	6.0	70
41	Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge ₂ Sb ₂ Se ₄ Te ₁ Phase Change Material. Journal of Lightwave Technology, 2019, 37, 3183-3191.	4.6	69
42	Low-loss photonic device in Ge–Sb–S chalcogenide glass. Optics Letters, 2016, 41, 3090.	3.3	65
43	Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow. Optics Express, 2010, 18, 1469.	3.4	63
44	Tellurene: A Multifunctional Material for Midinfrared Optoelectronics. ACS Photonics, 2019, 6, 1632-1638.	6.6	60
45	Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection. Optics Letters, 2009, 34, 3451.	3.3	57
46	A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects. Journal of Lightwave Technology, 2013, 31, 4080-4086.	4.6	57
47	Demonstration of chalcogenide glass racetrack microresonators. Optics Letters, 2008, 33, 761.	3.3	55
48	Highâ€Performance, Highâ€Indexâ€Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Nonâ€planar Substrates. Advanced Optical Materials, 2014, 2, 478-486.	7.3	54
49	High-performance flexible waveguide-integrated photodetectors. Optica, 2018, 5, 44.	9.3	54
50	Monolithic On-chip Magneto-optical Isolator with 3 dB Insertion Loss and 40 dB Isolation Ratio. ACS Photonics, 2018, 5, 5010-5016.	6.6	52
51	Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. Optics Express, 2010, 18, 22174.	3.4	51
52	Feature issue introduction: mid-IR photonic materials. Optical Materials Express, 2013, 3, 1571.	3.0	51
53	On-Chip Infrared Spectroscopic Sensing: Redefining the Benefits of Scaling. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 340-349.	2.9	49
54	Flexible and Stretchable Photonics: The Next Stretch of Opportunities. ACS Photonics, 2020, 7, 2618-2635.	6.6	49

#	Article	IF	Citations
55	Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films. Journal of Applied Physics, 2008, 104, 053707.	2.5	47
56	Solution Processing and Resistâ€Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration. Advanced Optical Materials, 2014, 2, 759-764.	7.3	47
57	Ultrahigh Figure-of-Merit in Metal–Insulator–Metal Magnetoplasmonic Sensors Using Low Loss Magneto-optical Oxide Thin Films. ACS Photonics, 2017, 4, 1403-1412.	6.6	45
58	Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design. Optics Letters, 2012, 37, 1304.	3.3	44
59	Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis. Journal of Lightwave Technology, 2009, 27, 5240-5245.	4.6	43
60	Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform. Optics Express, 2010, 18, 12890.	3.4	41
61	Photo-induced trimming of coupled ring-resonator filters and delay lines in As_2S_3 chalcogenide glass. Optics Letters, 2011, 36, 4002.	3.3	41
62	Si-CMOS compatible materials and devices for mid-IR microphotonics. Optical Materials Express, 2013, 3, 1474.	3.0	41
63	Low loss, flexible single-mode polymer photonics. Optics Express, 2019, 27, 11152.	3.4	41
64	Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors. Journal of Optics (United Kingdom), 2018, 20, 044004.	2.2	40
65	New Candidate Multicomponent Chalcogenide Glasses for Supercontinuum Generation. Applied Sciences (Switzerland), 2018, 8, 2082.	2.5	39
66	Nonlinear optical properties of integrated GeSbS chalcogenide waveguides. Photonics Research, 2018, 6, B37.	7.0	39
67	Resonant cavity-enhanced photosensitivity in As_2S_3 chalcogenide glass at 1550 nm telecommunication wavelength. Optics Letters, 2010, 35, 874.	3.3	38
68	On-chip optical tweezers based on freeform optics. Optica, 2021, 8, 409.	9.3	37
69	Foldable and Cytocompatible Sol-gel TiO2 Photonics. Scientific Reports, 2015, 5, 13832.	3.3	36
70	High spatial and temporal resolution synthetic aperture phase microscopy. Advanced Photonics, 2020, 2, .	11.8	35
71	Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films. Optical Materials, 2008, 30, 1560-1566.	3.6	32
72	Demonstration of mid-infrared waveguide photonic crystal cavities. Optics Letters, 2013, 38, 2779.	3.3	32

#	Article	IF	Citations
73	Waterproof molecular monolayers stabilize 2D materials. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20844-20849.	7.1	32
74	ZrO_2-TiO_2 thin films: a new material system for mid-infrared integrated photonics. Optical Materials Express, 2013, 3, 1537.	3.0	30
75	Breaking the Energy-Bandwidth Limit of Electrooptic Modulators: Theory and a Device Proposal. Journal of Lightwave Technology, 2013, 31, 4029-4036.	4.6	30
76	Dysprosium substituted Ce:YIG thin films with perpendicular magnetic anisotropy for silicon integrated optical isolator applications. APL Materials, 2019, 7, .	5.1	30
77	Gamma radiation effects in amorphous silicon and silicon nitride photonic devices. Optics Letters, 2017, 42, 587.	3.3	29
78	Endurance of chalcogenide optical phase change materials: a review. Optical Materials Express, 2022, 12, 2145.	3.0	29
79	Low-loss high-index-contrast planar waveguides with graded-index cladding layers. Optics Express, 2007, 15, 14566.	3.4	28
80	Deep Convolutional Neural Networks to Predict Mutual Coupling Effects in Metasurfaces. Advanced Optical Materials, 2022, 10, 2102113.	7.3	28
81	Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon. Applied Physics Letters, 2012, 100, 211106.	3.3	27
82	A new twist on glass: A brittle material enabling flexible integrated photonics. International Journal of Applied Glass Science, 2017, 8, 61-68.	2.0	27
83	Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26990-26995.	8.0	27
84	Engineering third-order optical nonlinearities in hybrid chalcogenide-on-silicon platform. Optics Letters, 2019, 44, 5009.	3.3	27
85	Femtosecond laser photo-response of Ge_23Sb_7S_70 films. Optics Express, 2008, 16, 20081.	3.4	26
86	Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices. Proceedings of SPIE, $2011, \ldots$	0.8	26
87	Broadband Transparent Optical Phase Change Materials. , 2017, , .		25
88	Nonlinear Midâ€Infrared Metasurface based on a Phaseâ€Change Material. Laser and Photonics Reviews, 2021, 15, 2000373.	8.7	25
89	A packaged, fiber-coupled waveguide-enhanced Raman spectroscopic sensor. Optics Express, 2020, 28, 14963.	3.4	25
90	Transient Tap Couplers for Wafer-Level Photonic Testing Based on Optical Phase Change Materials. ACS Photonics, 2021, 8, 1903-1908.	6.6	24

#	Article	IF	CITATIONS
91	The role of ceramic and glass science research in meeting societal challenges: Report from an <scp>NSF</scp> â€sponsored workshop. Journal of the American Ceramic Society, 2017, 100, 1777-1803.	3.8	23
92	Suppressed electronic contribution in thermal conductivity of Ge2Sb2Se4Te. Nature Communications, 2021, 12, 7187.	12.8	23
93	Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study. Journal of Applied Physics, 2011, 110, .	2.5	22
94	Optical Free-Form Couplers for High-density Integrated Photonics (OFFCHIP): A Universal Optical Interface. Journal of Lightwave Technology, 2020, 38, 3358-3365.	4.6	22
95	Artificial Synapse with Mnemonic Functionality using GSST-based Photonic Integrated Memory. , 2020, , .		21
96	All-optical computing based on convolutional neural networks. Opto-Electronic Advances, 2021, 4, 200060-200060.	13.3	21
97	Reconfigurable Frequency-Selective Resonance Splitting in Chalcogenide Microring Resonators. ACS Photonics, 2020, 7, 499-511.	6.6	19
98	Design of broadband and wide field-of-view metalenses. Optics Letters, 2021, 46, 5735-5738.	3.3	18
99	Deep neural network enabled active metasurface embedded design. Nanophotonics, 2022, 11, 4149-4158.	6.0	18
100	Reconfigurable Parfocal Zoom Metalens. Advanced Optical Materials, 2022, 10, .	7.3	18
101	Cavity-enhanced multispectral photodetector using phase-tuned propagation: theory and design. Optics Letters, 2010, 35, 742.	3.3	16
102	Are phase change materials ideal for programmable photonics?: opinion. Optical Materials Express, 2022, 12, 2368.	3.0	16
103	Impact of Stoichiometry on Structural and Optical Properties of Sputter Deposited Multicomponent Tellurite Glass Films. Journal of the American Ceramic Society, 2015, 98, 1731-1738.	3.8	15
104	Feature issue introduction: mid-infrared optical materials and their device applications. Optical Materials Express, 2018, 8, 2026.	3.0	15
105	Real-time, in situ probing of gamma radiation damage with packaged integrated photonic chips. Photonics Research, 2020, 8, 186.	7.0	15
106	Wafer integrated microâ€scale concentrating photovoltaics. Progress in Photovoltaics: Research and Applications, 2018, 26, 651-658.	8.1	14
107	Broadband couplers for hybrid silicon-chalcogenide glass photonic integrated circuits. Optics Express, 2019, 27, 13781.	3.4	14
108	Monolithic magneto-optical oxide thin films for on-chip optical isolation. MRS Bulletin, 2018, 43, 413-418.	3 . 5	13

#	Article	IF	Citations
109	High-performance graphene-integrated thermo-optic switch: design and experimental validation [Invited]. Optical Materials Express, 2020, 10, 387.	3.0	13
110	Evanescently coupled mid-infrared photodetector for integrated sensing applications: Theory and design. Sensors and Actuators B: Chemical, 2013, 185, 195-200.	7.8	12
111	Compact and Fabrication-Tolerant Waveguide Bends Based on Quadratic Reflectors. Journal of Lightwave Technology, 2020, 38, 4368-4373.	4.6	12
112	Understanding aging in chalcogenide glass thin films using precision resonant cavity refractometry. Optical Materials Express, 2019, 9, 2252.	3.0	12
113	Waveguide-integrated mid-infrared photodetection using graphene on a scalable chalcogenide glass platform. Nature Communications, 2022, 13, .	12.8	12
114	Fabrication and characterization of As 2 S 3 $/$ Y 3 Fe 5 O 12 and Y 3 Fe 5 O 12 $/$ SOI strip-loaded waveguides for integrated optical isolator applications. , 2010, , .		11
115	Towards universal enrichment nanocoating for IR-ATR waveguides. Chemical Communications, 2011, 47, 9104.	4.1	11
116	Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source. Optics Express, 2011, 19, 11951.	3.4	11
117	Gradient Polymer Nanofoams for Encrypted Recording of Chemical Events. ACS Nano, 2016, 10, 10716-10725.	14.6	11
118	Externally Pumped Photonic Chipâ€Based Ultrafast Raman Soliton Source. Laser and Photonics Reviews, 2021, 15, 2000301.	8.7	11
119	3D integrated photonics platform with deterministic geometry control. Photonics Research, 2020, 8, 194.	7.0	10
120	Engineering broadband and anisotropic photoluminescence emission from rare earth doped tellurite thin film photonic crystals. Optics Express, 2012, 20, 2124.	3.4	9
121	Spatial tailoring of the refractive index in infrared glass-ceramic films enabled by direct laser writing. Optics and Laser Technology, 2020, 126, 106058.	4.6	9
122	Development of novel integrated bio/chemical sensor systems using chalcogenide glass materials. International Journal of Nanotechnology, 2009, 6, 799.	0.2	8
123	Development of chipscale chalcogenide glass based infrared chemical sensors. Proceedings of SPIE, 2011,,.	0.8	8
124	Low-Voltage, Coupled Multiple Quantum Well Electroreflective Modulators Towards Ultralow Power Inter-Chip Optical Interconnects. Journal of Lightwave Technology, 2020, 38, 3414-3421.	4.6	8
125	Large-area optical metasurface fabrication using nanostencil lithography. Optics Letters, 2021, 46, 2324.	3.3	8
126	Monolithic chalcogenide glass waveguide integrated interband cascaded laser. Optical Materials Express, 2021, 11, 2869.	3.0	8

#	Article	IF	CITATIONS
127	All-dielectric Metasurface Designs Enabled by Deep Neural Networks. , 2020, , .		7
128	Compact spectrum splitter for laterally arrayed multi-junction concentrator photovoltaic modules. Optics Letters, 2019, 44, 3274.	3.3	7
129	Enhancing SiN waveguide optical nonlinearity via hybrid GaS integration. Journal of Optics (United) Tj ETQq1 1	0.784314 i 2.2	rgBT /Overloc
130	Topology optimization of surface-enhanced Raman scattering substrates. Applied Physics Letters, 2021, 119, .	3.3	6
131	Electrospray Deposition of Uniform Thickness Ge ₂₃ Sb ₇ S ₇₀ and As ₄₀ S ₆₀ Chalcogenide Glass Films. Journal of Visualized Experiments. 2016	0.3	6
132	Integrated Optical Sensors. IEEE Photonics Journal, 2012, 4, 638-641.	2.0	5
133	Microstructure, optical properties, and optical resonators of Hf_1-xTi_xO_2 amorphous thin films. Optical Materials Express, 2016, 6, 1871.	3.0	5
134	Electrically-switchable foundry-processed phase change photonic devices. , 2021, , .		5
135	Positron annihilation lifetime spectroscopy (PALS) studies of gamma irradiated As2Se3 films used in MIR integrated photonics. Journal of Non-Crystalline Solids, 2017, 455, 29-34.	3.1	4
136	Integrated Nonvolatile Phase-shifter Based on Electrically Reconfigurable Low-loss Phase-change Materials. , $2021, , .$		4
137	High-Performance Single-Mode Polymer Waveguide Devices for Chip-Scale Optical Interconnects. , 2019, , .		3
138	Chalcogenide glass metasurfaces from fluid instabilities. Nature Nanotechnology, 2019, 14, 309-311.	31.5	3
139	High-resolution on-chip digital Fourier transform spectroscopy. , 2018, , .		3
140	Single-layer Planar Metasurface Lens with >170 \hat{A}^o Field of View. , 2019, , .		3
141	Reshaping light: reconfigurable photonics enabled by broadband low-loss optical phase change materials. , 2019, , .		3
142	Photothermal nano-cavities for ultra-sensitive chem-bio detection. Proceedings of SPIE, 2011, , .	0.8	2
143	Chalcogenide glass planar photonics: from mid-IR sensing to 3-D flexible substrate integration. , 2013, , .		2
144	Diffractive broadband coupling into high-Q resonant cavities. Optics Letters, 2015, 40, 2377.	3.3	2

#	Article	IF	CITATIONS
145	SiC-on-insulator on-chip photonic sensor in a radiative environment., 2016,,.		2
146	Feature issue introduction: Optical Phase Change Materials. Optical Materials Express, 2018, 8, 2967.	3.0	2
147	New Journal prize to recognize the best paper from an emerging researcher: editorial. Optical Materials Express, 2018, 8, 1695.	3.0	2
148	Magneto-optical properties of InSb for infrared spectral filtering. Journal of Applied Physics, 2021, 129, 203104.	2.5	2
149	Strong Purcell enhancement at telecom wavelengths afforded by spinel Fe3O4 nanocrystals with size-tunable plasmonic properties. Nanoscale Horizons, 2021, , .	8.0	2
150	Light trapping limits in plasmonic solar cells: an analytical investigation: errata. Optics Express, 2012, 20, 24699.	3.4	1
151	Mid-infrared As <inf>2</inf> Se <inf>3</inf> chalcogenide glass-on-silicon waveguides. , 2012, , .		1
152	Chalcogenide glass based integrated photonics. Proceedings of SPIE, 2012, , .	0.8	1
153	High-Q Mid-Infrared Chalcogenide Glass Resonators for Chemical Sensing. , 2014, , .		1
154	Chip-to-chip optical interconnects based on flexible integrated photonics. Proceedings of SPIE, 2014, , .	0.8	1
155	Substrate-blind photonic integration based on high-index glass materials. , 2014, , .		1
156	Effect of Gamma Exposure on Chalcogenide Glass Films for Microphotonic Devices., 2016,,.		1
157	(Invited) Mechanically Flexible Integrated Photonic Systems for Sensing and Communications. ECS Transactions, 2017, 77, 37-46.	0.5	1
158	Integrated photonics for infrared spectroscopic sensing. Proceedings of SPIE, 2017, , .	0.8	1
159	Ultra-thin, high-efficiency mid-infrared Huygens metasurface optics. , 2018, , .		1
160	Micro-Prism Spectrum Splitting Optics for Lateral-Arrayed Multi Junction Micro CPV. , 2019, , .		1
161	Multifunctional Metasurface Design with a Generative Adversarial Network (Advanced Optical) Tj ETQq $1\ 1\ 0.78$	34314 rgBT 7.3	Oyerlock 1
162	Reconfigurable Mid-infrared Photonics. , 2021, , .		1

#	Article	IF	CITATIONS
163	A Deep Learning Approach to Explore the Mutual Coupling Effects in Metasurfaces. , 2021, , .		1
164	Nonlinear third order silicon photonics enabled by dispersion and subwavelength engineering. , 2019, , .		1
165	Wide Field-of-view Achromatic Metalenses. , 2021, , .		1
166	Glass in Integrated Photonics. Springer Handbooks, 2019, , 1441-1481.	0.6	1
167	Optical phase-change materials (O-PCMs) for reconfigurable photonics. , 2020, , .		1
168	Dielectric spectroscopic investigation of reversible photo-induced changes in amorphous Ge ₂ Sb ₂ Se ₅ thin films. Journal of Applied Physics, 2022, 131, 075102.	2.5	1
169	Ultra-broadband, high-efficiency, and wafer-scale fiber-to-chip coupling using free-form micro-optical reflectors. , 2022, , .		1
170	Cavity-enhanced photosensitivity in chalcogenide glass. , 2009, , .		0
171	Infrared Colloidal Quantum Dot Chalcogenide Films for Integrated Light Sources. , 2011, , .		O
172	Exploiting photosensitive As <inf>2</inf> S <inf>3</inf> chalcogenide glass in photonic integrated circuits. , 2012, , .		0
173	Double resonance 1-D glass-on-silicon photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: Theory and design. , 2012, , .		O
174	Thermal nanoimprint fabrication of chalcogenide glass waveguide resonators on nonconventional plastic substrates. , 2013, , .		0
175	Breaking the energy-bandwidth limit of electro-optic modulators: Theory and a device proposal. , 2013, , .		O
176	Cavity-enhanced mid-infrared on-chip chemical sensing using high-Q chalcogenide glass resonators. , 2013, , .		0
177	A fully-integrated flexible photonic platform for chip-to-chip optical interconnects. , 2013, , .		O
178	Planar chalcogenide glass mid-infrared photonics. , 2014, , .		0
179	Demonstration of high-performance, sub-micron chalcogenide glass photonic devices by thermal nanoimprint. Proceedings of SPIE, 2014, , .	0.8	0
180	ZrO2-TiO2 Thin Films and Resonators for Mid-Infrared Integrated Photonics. , 2014, , .		0

#	Article	IF	CITATIONS
181	Irradiation of on-chip chalcogenide glass waveguide mid-infrared gas sensor. , 2016, , .		O
182	Suspended chalcogenide microcavities for ultra-sensitive chemical detection., 2016,,.		0
183	Linear and third order nonlinear optical properties of GeSbS chalcogenide integrated waveguides. , 2017, , .		O
184	Mid-Infrared Metasurface Based on a Phase-Change Material for Enhanced Third-Harmonic Generation. , 2021, , .		0
185	2020 Optical Materials Express Emerging Researcher Best Paper Prize: editorial. Optical Materials Express, 2021, 11, 1441.	3.0	O
186	Cavity-Enhanced Photosensitivity in As2S3 Chalcogenide glass. , 2010, , .		0
187	Towards on-chip, integrated chalcogenide glass based biochemical sensors. , 2010, , .		O
188	Erbium-Doped Chalcogenide Glass Micro-Disks as Monolithic Mid-IR Laser Sources. , 2011, , .		0
189	3-D Flexible Glass Photonics. , 2013, , .		O
190	Thermal nanoimprint fabrication of chalcogenide glass waveguide resonators. , 2013, , .		0
191	Substrate-blind photonic integration. , 2015, , .		O
192	METAL-INSULATOR TRANSITION PROPERTY OF HF-DOPED VO2(M1) FILMS AND ITS APPLICATION FOR RECONFIGURABLE SILICON PHOTONIC DEVICE. Progress in Electromagnetics Research Letters, 2018, 76, 133-139.	0.7	0
193	Chip-scale Digital Fourier Transform Spectroscopy. , 2019, , .		O
194	Performance Optimization Strategies for Nanophotonic Digital Fourier Transform Spectrometers. , 2019, , .		0
195	Feature issue introduction: advanced computational nanophotonics: from materials to devices. Optical Materials Express, 2019, 9, 1967.	3.0	O
196	2018 Optical Materials Express Emerging Researcher Best Paper Prize: editorial. Optical Materials Express, 2019, 9, 2426.	3.0	0
197	2019 Optical Materials Express Emerging Researcher Best Paper Prize: editorial. Optical Materials Express, 2020, 10, 1392.	3.0	O
198	On-chip Integrated Magneto-Optical Nonreciprocal Photonic Devices. , 2021, , .		0

#	ARTICLE	IF	CITATIONS
199	What makes the best chip-scale photonic sensor?. , 2020, , .		O
200	Phase change reconfigurable nanophotonics on a foundry-processed SOI platform., 2021, , .		0
201	Ge2Sb2Se4Te1 Metasurface for Enhancing Third-Harmonic Generation in the Mid-Infrared., 2021, , .		O
202	Electrically Reconfigurable Nonvolatile Metasurface based on Phase Change Materials., 2021,,.		0
203	Understanding wide field-of-view metalenses. , 2022, , .		0
204	Phase change materials: the 'silicon' for analog photonic computing?. , 2022, , .		0