
Ning Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9633058/publications.pdf Version: 2024-02-01

NING WANG

#	Article	IF	CITATIONS
1	Controlled Growth and Selfâ€Assembly of Multiscale Organic Semiconductor. Advanced Materials, 2022, 34, e2102811.	21.0	24
2	Bimetallic metal–organic frameworks for tumor inhibition via combined photothermal-immunotherapy. Chemical Communications, 2022, , .	4.1	4
3	Facile Synthesis of Water-Soluble Rhodamine-Based Polymeric Chemosensors via Schiff Base Reaction for Fe3+ Detection and Living Cell Imaging. Frontiers in Chemistry, 2022, 10, 845627.	3.6	13
4	Acetylenic bond-driven efficient hydrogen production of a graphdiyne based catalyst. Materials Chemistry Frontiers, 2021, 5, 2247-2254.	5.9	21
5	Vaccine Nanoparticles Derived from Mung Beans for Cancer Immunotherapy. Chemistry of Materials, 2021, 33, 4057-4066.	6.7	10
6	Porous 3D Siliconâ€Diamondyne Blooms Excellent Storage and Diffusion Properties for Li, Na, and K Ions. Advanced Energy Materials, 2021, 11, 2101197.	19.5	35
7	Preparation of triphenyl-amine graphdiyne with concomitant assembled morphology and its application for lithium-ion storage. 2D Materials, 2021, 8, 044005.	4.4	7
8	Nitrogen substituted graphdiyne as electrode for high-performance lithium-ion batteries and capacitors. 2D Materials, 2021, 8, 044013.	4.4	5
9	Encapsulation of Enzymes in Metal–Phenolic Network Capsules for the Trigger of Intracellular Cascade Reactions. Langmuir, 2021, 37, 11292-11300.	3.5	12
10	Self-adjuvanting photosensitizer nanoparticles for combination photodynamic immunotherapy. Biomaterials Science, 2021, 9, 6940-6949.	5.4	9
11	Diffusion Kinetics Study of Lithium Ion in the Graphdiyne Based Electrode. Chemical Research in Chinese Universities, 2021, 37, 1289-1295.	2.6	6
12	Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries. Applied Catalysis B: Environmental, 2020, 261, 118234.	20.2	135
13	Research on the Preparation of Graphdiyne and Its Derivatives. Chemistry - A European Journal, 2020, 26, 569-583.	3.3	42
14	ESP–ALIE Analysis as a Theoretical Tool for Identifying the Coordination Atoms of Possible Multisite Extractants: Validation and Prediction. ACS Sustainable Chemistry and Engineering, 2020, 8, 14353-14364.	6.7	7
15	Tuning the Properties of Graphdiyne by Introducing Electronâ€Withdrawing/Donating Groups. Angewandte Chemie - International Edition, 2020, 59, 13542-13546.	13.8	59
16	One‣tep Preparation of Highly Durable Superhydrophobic Carbon Nanothorn Arrays. Small, 2020, 16, e1907013.	10.0	19
17	Tuning the Properties of Graphdiyne by Introducing Electronâ€Withdrawing/Donating Groups. Angewandte Chemie, 2020, 132, 13644-13648.	2.0	21
18	Induced Ferromagnetic Order of Graphdiyne Semiconductors by Introducing a Heteroatom. ACS Central Science, 2020, 6, 950-958.	11.3	38

NING WANG

#	Article	IF	CITATIONS
19	Designing the efficient lithium diffusion and storage channels based on graphdiyne. Carbon, 2020, 162, 579-585.	10.3	26
20	Frontispiece: Research on the Preparation of Graphdiyne and Its Derivatives. Chemistry - A European Journal, 2020, 26, .	3.3	1
21	Precise and controllable N/C ratio in graphdiyne for superior Li and Na ions storage capacities. 2D Materials, 2020, 7, 025032.	4.4	23
22	Electrochemical Energy Storage: Graphdiyneâ€Based Materials: Preparation and Application for Electrochemical Energy Storage (Adv. Mater. 42/2019). Advanced Materials, 2019, 31, 1970300.	21.0	20
23	Graphdiyneâ€Based Materials: Preparation and Application for Electrochemical Energy Storage. Advanced Materials, 2019, 31, e1803202.	21.0	136
24	Fluorineâ€Enriched Graphdiyne as an Efficient Anode in Lithiumâ€Ion Capacitors. ChemSusChem, 2019, 12, 1342-1348.	6.8	40
25	Robust C–S bond integrated graphdiyne-MoS2 nanohybrids for enhanced lithium storage capability. Chemical Engineering Journal, 2019, 373, 660-667.	12.7	50
26	Preparation and structure study of phosphorus-doped porous graphdiyne and its efficient lithium storage application. 2D Materials, 2019, 6, 035020.	4.4	52
27	Recovery of Au(III) from Acidic Chloride Media by Homogenous Liquid–Liquid Extraction with UCST-Type Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 19975-19983.	6.7	29
28	Graphdiyne-Doped P3CT-K as an Efficient Hole-Transport Layer for MAPbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 2626-2631.	8.0	61
29	Synthesis and Electronic Structure of Boronâ€Graphdiyne with an spâ€Hybridized Carbon Skeleton and Its Application in Sodium Storage. Angewandte Chemie - International Edition, 2018, 57, 3968-3973.	13.8	166
30	Improved electron transport in MAPbI3 perovskite solar cells based on dual doping graphdiyne. Nano Energy, 2018, 46, 331-337.	16.0	135
31	<i>In situ</i> growth of graphdiyne on arbitrary substrates with a controlled-release method. Chemical Communications, 2018, 54, 6004-6007.	4.1	58
32	Construction of Largeâ€Area Uniform Graphdiyne Film for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 1187-1192.	3.3	58
33	Triazine-graphdiyne: A new nitrogen-carbonous material and its application as an advanced rechargeable battery anode. Carbon, 2018, 137, 442-450.	10.3	64
34	Nitrogenâ€Doped Graphdiyne as High apacity Electrode Materials for Both Lithiumâ€ion and Sodiumâ€ion Capacitors. ChemElectroChem, 2018, 5, 1435-1443.	3.4	46
35	Progress in Research into 2D Graphdiyne-Based Materials. Chemical Reviews, 2018, 118, 7744-7803.	47.7	745
36	Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance. Energy and Environmental Science, 2018, 11, 2893-2903.	30.8	146

NING WANG

#	Article	IF	CITATIONS
37	Preparation of room-temperature ferromagnetic semiconductor based on graphdiyne-transition metal hybrid. 2D Materials, 2018, 5, 035039.	4.4	28
38	Preparation of 3D Architecture Graphdiyne Nanosheets for High-Performance Sodium-Ion Batteries and Capacitors. ACS Applied Materials & amp; Interfaces, 2017, 9, 40604-40613.	8.0	91
39	Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nature Communications, 2017, 8, 1172.	12.8	357
40	Enhanced paramagnetism of mesoscopic graphdiyne by doping with nitrogen. Scientific Reports, 2017, 7, 11535.	3.3	54
41	Synthesis of Chlorineâ€5ubstituted Graphdiyne and Applications for Lithiumâ€Ion Storage. Angewandte Chemie - International Edition, 2017, 56, 10740-10745.	13.8	206
42	Nitrogen-Doped Porous Graphdiyne: A Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2017, 9, 29744-29752.	8.0	166
43	A New Class of Conjugated Polymers Having Porphyrin, Poly(p-phenylenevinylene), and Fullerene Units for Efficient Electron Transfer. Macromolecules, 2006, 39, 5319-5325.	4.8	49
44	Synthesis and Characterization of 3,5-Bis(2-hydroxyphenyl)-1,2,4-triazole Functionalized Tetraaryloxy Perylene Bisimide and Metal-Directed Self-Assembly. Journal of Organic Chemistry, 2005, 70, 9686-9692.	3.2	38