
Choimaa Dulamsuren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9633016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Climatic Change, 2016, 134, 163-176.	3.6	153
2	Climate Warming-Related Growth Decline Affects Fagus sylvatica, But Not Other Broad-Leaved Tree Species in Central European Mixed Forests. Ecosystems, 2015, 18, 560-572.	3.4	138
3	European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees - Structure and Function, 2017, 31, 673-686.	1.9	91
4	Climate-change-driven growth decline of European beech forests. Communications Biology, 2022, 5, 163.	4.4	89
5	Diverging climate trends in Mongolian taiga forests influence growth and regeneration of Larix sibirica. Oecologia, 2010, 163, 1091-1102.	2.0	78
6	Water relations and photosynthetic performance in Larix sibirica growing in the forest-steppe ecotone of northern Mongolia. Tree Physiology, 2008, 29, 99-110.	3.1	69
7	Increased Summer Temperatures Reduce the Growth and Regeneration of Larix sibirica in Southern Boreal Forests of Eastern Kazakhstan. Ecosystems, 2013, 16, 1536-1549.	3.4	65
8	Recent drought stress leads to growth reductions in <i>Larix sibirica</i> in the western Khentey, Mongolia. Global Change Biology, 2010, 16, 3024-3035.	9.5	61
9	Response of tree-ring width to climate warming and selective logging in larch forests of the Mongolian Altai. Journal of Plant Ecology, 2014, 7, 24-38.	2.3	56
10	Recent Climate Warming-Related Growth Decline Impairs European Beech in the Center of Its Distribution Range. Ecosystems, 2017, 20, 1494-1511.	3.4	55
11	Climate response of tree-ring width in Larix sibirica growing in the drought-stressed forest-steppe ecotone of northern Mongolia. Annals of Forest Science, 2011, 68, 275-282.	2.0	45
12	Spatial and seasonal variation of climate on steppe slopes of the northern Mongolian mountain taiga. Grassland Science, 2008, 54, 217-230.	1.1	41
13	Twenty Years After Decollectivization: Mobile Livestock Husbandry and Its Ecological Impact in the Mongolian Forest-Steppe. Human Ecology, 2013, 41, 725-735.	1.4	36
14	Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forestâ€steppe. Global Change Biology, 2016, 22, 830-844.	9.5	36
15	Higher climate warming sensitivity of Siberian larch in small than large forest islands in the fragmented Mongolian forest steppe. Global Change Biology, 2017, 23, 3675-3689.	9.5	33
16	Extremely low fine root biomass in Larix sibirica forests at the southern drought limit of the boreal forest. Flora: Morphology, Distribution, Functional Ecology of Plants, 2013, 208, 488-496.	1.2	32
17	Contrasting responses of seedling and sapling densities to livestock density in the Mongolian forest-steppe. Plant Ecology, 2013, 214, 1391-1403.	1.6	30
18	Edge and land-use effects on epiphytic lichen diversity in the forest-steppe ecotone of the Mongolian Altai. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 450-458.	1.2	24

#	Article	IF	CITATIONS
19	Modelling the productivity of Siberian larch forests from Landsat NDVI time series in fragmented forest stands of the Mongolian forest-steppe. Environmental Monitoring and Assessment, 2021, 193, 200.	2.7	24
20	Equations for estimating the above-ground biomass of Larix sibirica in the forest-steppe of Mongolia. Journal of Forestry Research, 2013, 24, 431-437.	3.6	23
21	Stem increment and hydraulic architecture of a boreal conifer (Larix sibirica) under contrasting macroclimates. Trees - Structure and Function, 2015, 29, 623-636.	1.9	23
22	Climate effects on inter- and intra-annual larch stemwood anomalies in the Mongolian forest-steppe. Acta Oecologica, 2014, 55, 113-121.	1.1	22
23	Hydraulic traits and tree-ring width in Larix sibirica Ledeb. as affected by summer drought and forest fragmentation in the Mongolian forest steppe. Annals of Forest Science, 2018, 75, 1.	2.0	22
24	Late Holocene vegetation, climate, human and fire history of the forest-steppe-ecosystem inferred from core G2-A in the â€~Altai Tavan Bogd' conservation area in Mongolia. Vegetation History and Archaeobotany, 2018, 27, 665-677.	2.1	22
25	Seedling emergence and establishment of Pinus sylvestris in the Mongolian forest-steppe ecotone. Plant Ecology, 2013, 214, 139-152.	1.6	18
26	Vitality variation and population structure of a riparian forest in the lower reaches of the Tarim River, NW China. Journal of Forestry Research, 2018, 29, 749-760.	3.6	18
27	Hydraulic properties and fine root mass of Larix sibirica along forest edge-interior gradients. Acta Oecologica, 2015, 63, 28-35.	1.1	17
28	Hydraulic architecture and vulnerability to drought-induced embolism in southern boreal tree species of Inner Asia. Tree Physiology, 2019, 39, 463-473.	3.1	17
29	Effects of forest fragmentation on organic carbon pool densities in the Mongolian forest-steppe. Forest Ecology and Management, 2019, 433, 780-788.	3.2	16
30	Interrelations between relief, vegetation, disturbances, and permafrost in the forestâ€steppe of central Mongolia. Earth Surface Processes and Landforms, 2021, 46, 1766-1782.	2.5	16
31	Drought stress mitigation by nitrogen in boreal forests inferred from stable isotopes. Global Change Biology, 2021, 27, 5211-5224.	9.5	15
32	Organic carbon stock losses by disturbance: Comparing broadleaved pioneer and late-successional conifer forests in Mongolia's boreal forest. Forest Ecology and Management, 2021, 499, 119636.	3.2	13
33	Relationships between the diversity patterns of vascular plants, lichens and invertebrates in the Central Asian forest-steppe ecotone. Biodiversity and Conservation, 2014, 23, 1105-1117.	2.6	12
34	Age structure and trends in annual stem increment of Larix sibirica in two neighboring Mongolian forest–steppe regions differing in land use history. Trees - Structure and Function, 2017, 31, 1973-1986.	1.9	11
35	Anomalous Increase in Winter Temperature and Decline in Forest Growth Associated with Severe Winter Smog in the Ulan Bator Basin. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	6
36	Did stand opening 60 years ago predispose a European beech population to death?. Trees, Forests and People, 2022, 8, 100265.	1.9	2