
Stephane Vinit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/963284/publications.pdf Version: 2024-02-01

Stedhane Vinit

#	Article	IF	CITATIONS
1	Rostral-Caudal Effect of Cervical Magnetic Stimulation on the Diaphragm Motor Evoked Potential after Cervical Spinal Cord Contusion in the Rat. Journal of Neurotrauma, 2022, 39, 683-700.	3.4	13
2	Effects of Chronic High-Frequency rTMS Protocol on Respiratory Neuroplasticity Following C2 Spinal Cord Hemisection in Rats. Biology, 2022, 11, 473.	2.8	9
3	Diaphragmatic Activity and Respiratory Function Following C3 or C6 Unilateral Spinal Cord Contusion in Mice. Biology, 2022, 11, 558.	2.8	1
4	Analysis of inspiratory and expiratory muscles using ultrasound in rats: A reproducible and non-invasive tool to study respiratory function. Respiratory Physiology and Neurobiology, 2021, 285, 103596.	1.6	1
5	Effects of aerobic exercise training on muscle plasticity in a mouse model of cervical spinal cord injury. Scientific Reports, 2021, 11, 112.	3.3	12
6	Permanent diaphragmatic deficits and spontaneous respiratory plasticity in a mouse model of incomplete cervical spinal cord injury. Respiratory Physiology and Neurobiology, 2021, 284, 103568.	1.6	13
7	Diaphragm Motor-Evoked Potential Induced by Cervical Magnetic Stimulation following Cervical Spinal Cord Contusion in the Rat. Journal of Neurotrauma, 2021, 38, 2122-2140.	3.4	16
8	Functional role of carbon dioxide on intermittent hypoxia induced respiratory response following mid-cervical contusion in the rat. Experimental Neurology, 2021, 339, 113610.	4.1	8
9	Respiratory Training and Plasticity After Cervical Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2021, 15, 700821.	3.7	15
10	High frequency repetitive Transcranial Magnetic Stimulation promotes long lasting phrenic motoneuron excitability via GABAergic networks. Respiratory Physiology and Neurobiology, 2021, 292, 103704.	1.6	8
11	Comparative effectiveness of 4 natural and chemical activators of Nrf2 on inflammation, oxidative stress, macrophage polarization, and bactericidal activity in an in vitro macrophage infection model. PLoS ONE, 2020, 15, e0234484.	2.5	21
12	5-HT7 Receptor Inhibition Transiently Improves Respiratory Function Following Daily Acute Intermittent Hypercapnic-Hypoxia in Rats With Chronic Midcervical Spinal Cord Contusion. Neurorehabilitation and Neural Repair, 2020, 34, 333-343.	2.9	11
13	Sulforaphane reduces intracellular survival of Staphylococcus aureus in macrophages through inhibition of JNK and p38 MAPKâ€ʻinduced inflammation. International Journal of Molecular Medicine, 2020, 45, 1927-1941.	4.0	16
14	Modulation of Serotonin and Adenosine 2A Receptors on Intermittent Hypoxia-Induced Respiratory Recovery following Mid-Cervical Contusion in the Rat. Journal of Neurotrauma, 2019, 36, 2991-3004.	3.4	21
15	Diaphragm: Pathophysiology and Ultrasound Imaging in Neuromuscular Disorders. Journal of Neuromuscular Diseases, 2018, 5, 1-10.	2.6	57
16	Daily acute intermittent hypoxia improves breathing function with acute and chronic spinal injury via distinct mechanisms. Respiratory Physiology and Neurobiology, 2018, 256, 50-57.	1.6	39
17	Sustained cell body reactivity and loss of NeuN in a subset of axotomized bulbospinal neurons after a chronic high cervical spinal cord injury. European Journal of Neuroscience, 2017, 46, 2729-2745.	2.6	7
18	Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury. Experimental Neurology, 2017, 287, 276-287.	4.1	27

STEPHANE VINIT

#	Article	IF	CITATIONS
19	Reorganization of Respiratory Descending Pathways following Cervical Spinal Partial Section Investigated by Transcranial Magnetic Stimulation in the Rat. PLoS ONE, 2016, 11, e0148180.	2.5	22
20	Novel role for transcranial magnetic stimulation to study post-traumatic respiratory neuroplasticity. Neural Regeneration Research, 2016, 11, 1073.	3.0	3
21	Respiratory function after selective respiratory motor neuron death from intrapleural CTB–saporin injections. Experimental Neurology, 2015, 267, 18-29.	4.1	25
22	Interdisciplinary Approaches of Transcranial Magnetic Stimulation Applied to a Respiratory Neuronal Circuitry Model. PLoS ONE, 2014, 9, e113251.	2.5	26
23	Adenosine 2A Receptor Inhibition Enhances Intermittent Hypoxia-Induced Diaphragm but Not Intercostal Long-Term Facilitation. Journal of Neurotrauma, 2014, 31, 1975-1984.	3.4	27
24	Spinal nNOS regulates phrenic motor facilitation by a 5-HT2B receptor- and NADPH oxidase-dependent mechanism. Neuroscience, 2014, 269, 67-78.	2.3	14
25	A Murine Model of Cervical Spinal Cord Injury to Study Post-lesional Respiratory Neuroplasticity. Journal of Visualized Experiments, 2014, , .	0.3	14
26	Adrenergic α ₁ receptor activation is sufficient, but not necessary for phrenic long-term facilitation. Journal of Applied Physiology, 2014, 116, 1345-1352.	2.5	25
27	New perspectives for investigating respiratory failure induced by cervical spinal cord injury. Neural Regeneration Research, 2014, 9, 1949-51.	3.0	2
28	Systemic LPS induces spinal inflammatory gene expression and impairs phrenic long-term facilitation following acute intermittent hypoxia. Journal of Applied Physiology, 2013, 114, 879-887.	2.5	69
29	Hypoxia attenuates purinergic P2X receptor-induced inflammatory gene expression in brainstem microglia. Hypoxia (Auckland, N Z), 2013, 2013, 1.	1.9	11
30	Repetitive Intermittent Hypoxia Induces Respiratory and Somatic Motor Recovery after Chronic Cervical Spinal Injury. Journal of Neuroscience, 2012, 32, 3591-3600.	3.6	162
31	Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity. Neuroscience, 2011, 178, 45-55.	2.3	67
32	Lipopolysaccharide attenuates phrenic long-term facilitation following acute intermittent hypoxia. Respiratory Physiology and Neurobiology, 2011, 176, 130-135.	1.6	54
33	Systemic inflammation impairs respiratory chemoreflexes and plasticity. Respiratory Physiology and Neurobiology, 2011, 178, 482-489.	1.6	80
34	Distinct Expression of c-Jun and HSP27 in Axotomized and Spared Bulbospinal Neurons After Cervical Spinal Cord Injury. Journal of Molecular Neuroscience, 2011, 45, 119-133.	2.3	14
35	Spinal plasticity following intermittent hypoxia: implications for spinal injury. Annals of the New York Academy of Sciences, 2010, 1198, 252-259.	3.8	85
36	Atypical protein kinase C expression in phrenic motor neurons of the rat. Neuroscience, 2010, 169, 787-793.	2.3	11

STEPHANE VINIT

#	Article	IF	CITATIONS
37	Intermittent hypoxia induces functional recovery following cervical spinal injury. Respiratory Physiology and Neurobiology, 2009, 169, 210-217.	1.6	66
38	Descending bulbospinal pathways and recovery of respiratory motor function following spinal cord injury. Respiratory Physiology and Neurobiology, 2009, 169, 115-122.	1.6	53
39	Effect of cervical spinal cord hemisection on the expression of axon growth markers. Neuroscience Letters, 2009, 462, 276-280.	2.1	12
40	dAIH restores phrenic longâ€ŧerm facilitation contralateral to cervical spinal injury. FASEB Journal, 2009, 23, 784.5.	0.5	2
41	Longâ€ŧerm reorganization of respiratory pathways after partial cervical spinal cord injury. European Journal of Neuroscience, 2008, 27, 897-908.	2.6	40
42	Specific and artifactual labeling in the rat spinal cord and medulla after injection of monosynaptic retrograde tracers into the diaphragm. Neuroscience Letters, 2007, 417, 206-211.	2.1	38
43	Restorative respiratory pathways after partial cervical spinal cord injury: role of ipsilateral phrenic afferents. European Journal of Neuroscience, 2007, 25, 3551-3560.	2.6	52
44	Diaphragm recovery by laryngeal innervation after bilateral phrenicotomy or complete C2 spinal section in rats. Neurobiology of Disease, 2006, 24, 53-66.	4.4	22
45	High Cervical Lateral Spinal Cord Injury Results in Long-Term Ipsilateral Hemidiaphragm Paralysis. Journal of Neurotrauma, 2006, 23, 1137-1146.	3.4	86
46	Axotomized bulbospinal neurons express c-Jun after cervical spinal cord injury. NeuroReport, 2005, 16, 1535-1539.	1.2	26