Siti Khodijah Chaerun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9632507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction between clay minerals and hydrocarbon-utilizing indigenous microorganisms in high concentrations of heavy oil: implications for bioremediation. Clay Minerals, 2005, 40, 105-114.	0.6	59
2	Indirect bioleaching of low-grade nickel limonite and saprolite ores using fungal metabolic organic acids generated by Aspergillus niger. Hydrometallurgy, 2017, 174, 29-37.	4.3	35
3	Biodesulfurization of organic sulfur in Tondongkura coal from Indonesia by multi-stage bioprocess treatments. Hydrometallurgy, 2017, 168, 84-93.	4.3	20
4	Bacteria incorporated with calcium lactate pentahydrate to improve the mortar properties and self-healing occurrence. Scientific Reports, 2020, 10, 17873.	3.3	18
5	Life in oil: Hydrocarbon-degrading bacterial mineralization in oil spill-polluted marine environment. Frontiers of Materials Science in China, 2008, 2, 120-133.	0.5	10
6	Use of Mixotrophic Bacteria as Flocculating Agents to Separate Iron from Red Mud (Alumina Refinery) Tj ETQq0 C	0_rgBT /0 2.9	verlock 10 T
7	Effects of Several Parameters on Nickel Extraction from Laterite Ore by Direct Bioelaching Using <i>Aspergillus niger </i> and Acid Rock Drainage from Coal Mine as an Organic Substrate. Advanced Materials Research, 0, 825, 356-359.	0.3	6
8	Recovery of Copper from Pyritic Copper Ores Using a Biosurfactant-Producing Mixotrophic Bacterium as Bioflotation Reagent. Solid State Phenomena, 2017, 262, 181-184.	0.3	6
9	Bioleaching of Indonesian Galena Concentrate With an Iron- and Sulfur-Oxidizing Mixotrophic Bacterium at Room Temperature. Frontiers in Microbiology, 2020, 11, 557548.	3.5	6
10	Tempeh Waste as a Natural, Economical Carbon and Nutrient Source: ED-XRF and NCS Study. HAYATI Journal of Biosciences, 2009, 16, 120-122.	0.4	5
11	Characterization of interaction of biosurfactant-producing bacteria with pyrite minerals as an alternative to depressant reagents in the bioflotation process of copper sulfide minerals that are more environmentally friendly. AIP Conference Proceedings, 2020, , .	0.4	5
12	Influence of indigenous mixotrophic bacteria on pyrite surface chemistry: Implications for bioflotation. Microbiology Indonesia, 2020, 14, 1.	0.3	5
13	Bioleaching of Supergene Porphyry Copper Ores from Sungai Mak Gorontalo of Indonesia by an Iron- and Sulfur-Oxidizing Mixotrophic Bacterium. Solid State Phenomena, 2017, 262, 20-23.	0.3	4
14	Biocorrosion Behavior of AISI 1006 Carbon Steel Protected by Biofilm of Bacillus subtilis by an Iron-Oxidizing Bacterium and a Sulfate-Reducing Bacterium. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	2.6	4
15	Utilization of a New Locally Isolated Bacterial Strain for Promoting Mechanical Properties of Mortar. International Journal of Civil Engineering, 2020, 18, 665-671.	2.0	4
16	A biosurfactant-producing and iron-oxidizing mixotrophic bacterium as an environmentally friendly reagent for eco-green flotation of Indonesian complex Pb-Zn ores. Minerals Engineering, 2021, 170, 106824.	4.3	4
17	Surface Modification of Galena Concentrate, Sphalerite Concentrate, and Silica by the Bacterium Citrobacter sp. and Its Application to Green Flotation of Complex Pb–Zn Ores. Journal of Sustainable Metallurgy, 2021, 7, 1265-1279.	2.3	3

18Bacterial Leaching of an Indonesian Complex Copper Sulfide Ore Using an Iron-Oxidizing Indigenous
Bacterium. Microbiology Indonesia, 2018, 12, 1-6.0.33

#	Article	IF	CITATIONS
19	Effects of Individual Use, Mixed Culture and Sulfur Addition on the Effectiveness of Nickel Laterite Ore Bioelaching with <i>Penicillium verruculosum</i> and <i>Galactomyces geotrichum</i> . Advanced Materials Research, 0, 825, 380-383.	0.3	2
20	Organic Acid Biogeneration by <i>Aspergillus niger </i> and its Utilization for Indirect Bioleaching of Nickel Laterite Ore. Advanced Materials Research, 2015, 1130, 273-277.	0.3	2
21	Biooxidation of Carbonaceous Refractory Gold Ores by an Iron-Sulfur-Oxidizing Mixotrophic Bacterium at Neutral pH. Advanced Materials Research, 2015, 1130, 440-444.	0.3	2
22	Organic Sulfur Reduction on Lignite Coal Using Multistage Artificial Biotreatment (A-Bmt). Advanced Materials Research, 2015, 1130, 524-528.	0.3	1
23	FTIR Analysis on Organic Sulfur Distribution: Aliphatic Mercaptans in Lignite, Prior and after Multistage Artificial Biotreatment Process. Advanced Materials Research, 0, 1130, 503-506.	0.3	1
24	Assessment of Surface Properties of Silica-Bacterial Cell Complex: A Potential Application for Silicate Bioflotation Processes. Advanced Materials Research, 0, 1130, 515-518.	0.3	1
25	Possible Role of the Biosurfactant-Producing and Fe-S-Oxidizing Bacterium in Silicate and Sulfide Bioflotation Processes. Advanced Materials Research, 2015, 1130, 493-498.	0.3	1
26	Utilization of the Bacteria Bacillus pumilus and Citrobacter youngae as Flotation Bioreagents in the Microflotation of Chalcopyrite, Pyrite, and Silica. Microbiology Indonesia, 2016, 10, 15-22.	0.3	1
27	Selective Dissolution of Magnesium from Ferronickel Slag by Sulfur-Oxidizing Mixotrophic Bacteria at Room Temperature. Journal of Sustainable Metallurgy, 2022, 8, 1014-1025.	2.3	1