Midori Shimada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9632170/publications.pdf Version: 2024-02-01

ΜΙΠΟΡΙ SΗΙΜΛΠΛ

#	Article	IF	CITATIONS
1	Chk1 Is a Histone H3 Threonine 11 Kinase that Regulates DNA Damage-Induced Transcriptional Repression. Cell, 2008, 132, 221-232.	28.9	238
2	Necessary and Sufficient Role for a Mitosis Skip in Senescence Induction. Molecular Cell, 2014, 55, 73-84.	9.7	165
3	Activation of Endogenous Retroviruses in Dnmt1 â^'/â^ ESCs Involves Disruption of SETDB1-Mediated Repression by NP95 Binding to Hemimethylated DNA. Cell Stem Cell, 2016, 19, 81-94.	11.1	77
4	Protein phosphatase 1γ is responsible for dephosphorylation of histone H3 at Thr 11 after DNA damage. EMBO Reports, 2010, 11, 883-889.	4.5	48
5	Essential role of autoactivation circuitry on Aurora B-mediated H2AX-pS121 in mitosis. Nature Communications, 2016, 7, 12059.	12.8	40
6	DNA Damage Checkpoints and Cancer. Journal of Molecular Histology, 2006, 37, 253-260.	2.2	39
7	Response to DNA damage: why do we need to focus on protein phosphatases?. Frontiers in Oncology, 2013, 3, 8.	2.8	32
8	Targeting EZH2 as cancer therapy. Journal of Biochemistry, 2021, 170, 1-4.	1.7	29
9	FKBP51 and FKBP52 regulate androgen receptor dimerization and proliferation in prostate cancer cells. Molecular Oncology, 2022, 16, 940-956.	4.6	19
10	Calcineurin regulates cyclin D1 stability through dephosphorylation at T286. Scientific Reports, 2019, 9, 12779.	3.3	17
11	Cdc2p controls the forkhead transcription factor Fkh2p by phosphorylation during sexual differentiation in fission yeast. EMBO Journal, 2008, 27, 132-142.	7.8	16
12	FKBP52 and FKBP51 differentially regulate the stability of estrogen receptor in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110256119.	7.1	15
13	CBP-93872 Inhibits NBS1-Mediated ATR Activation, Abrogating Maintenance of the DNA Double-Strand Break–Specific G2 Checkpoint. Cancer Research, 2014, 74, 3880-3889.	0.9	14
14	The G2 checkpoint inhibitor CBP-93872 increases the sensitivity of colorectal and pancreatic cancer cells to chemotherapy. PLoS ONE, 2017, 12, e0178221.	2.5	13
15	Calcineurin regulates the stability and activity of estrogen receptor $\hat{I}\pm$. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
16	Checkpoints meet the transcription at a novel histone milestone (H3-T11). Cell Cycle, 2008, 7, 1555-1559.	2.6	12
17	Defective DNA repair increases susceptibility to senescence through extension of Chk1-mediated G2 checkpoint activation. Scientific Reports, 2016, 6, 31194.	3.3	11
18	Decoding the Phosphatase Code: Regulation of Cell Proliferation by Calcineurin. International Journal of Molecular Sciences, 2022, 23, 1122.	4.1	11

Midori Shimada

#	Article	IF	CITATIONS
19	Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast. Biochemical and Biophysical Research Communications, 2009, 388, 529-532.	2.1	7
20	Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication. Biochemical and Biophysical Research Communications, 2016, 469, 960-966.	2.1	7
21	Regulation of Cdc2p and Cdc13p Is Required for Cell Cycle Arrest Induced by Defective RNA Splicing in Fission Yeast. Journal of Biological Chemistry, 2005, 280, 32640-32648.	3.4	6
22	Mammal-specific H2A Variant, H2ABbd, Is Involved in Apoptotic Induction via Activation of NF-κB Signaling Pathway. Journal of Biological Chemistry, 2014, 289, 11656-11666.	3.4	5
23	Physical interaction between MPP8 and PRC1 complex and its implication for regulation of spermatogenesis. Biochemical and Biophysical Research Communications, 2015, 458, 470-475.	2.1	5
24	PP1 regulatory subunit NIPP1 regulates transcription of E2F1 target genes following DNA damage. Cancer Science, 2021, 112, 2739-2752.	3.9	3
25	Aurora B twists on histones for activation. Cell Cycle, 2016, 15, 3321-3322.	2.6	2
26	UVâ€induced activation of ATR is mediated by UHRF2. Genes To Cells, 2021, 26, 447-454.	1.2	1
27	Transcriptional regulation and maintenance of genome stability by checkpoint kinase Chk1. Journal of the Society of Japanese Women Scientists, 2018, 18, 18-28.	0.0	0