Tomo Takeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9632068/publications.pdf Version: 2024-02-01

Τομο Τλκέρλ

#	Article	IF	CITATIONS
1	Strength enhancement of adhesively bonded Ti-6Al-4V alloy joints by flame-based surface treatment. Journal of Adhesion, 2022, 98, 1016-1035.	1.8	3
2	Mechanical responses of additively manufactured MoSiBTiC alloy under tensile and compressive loadings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 839, 142848.	2.6	1
3	Silica deposition treatment of 2024 aluminum alloy for improved coating adhesion. International Journal of Adhesion and Adhesives, 2021, 105, 102786.	1.4	4
4	Effectiveness of flame-based surface treatment for adhesive bonding of carbon fiber reinforced epoxy matrix composites. Composites Part A: Applied Science and Manufacturing, 2019, 119, 30-37.	3.8	38
5	Strength and bonding characteristics of adhesive joints with surface-treated titanium-alloy substrates. Journal of Adhesion Science and Technology, 2018, 32, 553-571.	1.4	7
6	Experimental characterization of dynamic crack growth behavior in CFRP adhesive interface. Advanced Composite Materials, 2018, 27, 397-411.	1.0	10
7	Micromechanics model for three-dimensional effective elastic properties of composite laminates with ply wrinkles. Composite Structures, 2018, 189, 419-427.	3.1	26
8	Effects of Loading Rate on the Crack Growth Behavior of Adhesively Bonded CFRP Joints with a Structural Film Adhesive. Zairyo/Journal of the Society of Materials Science, Japan, 2018, 67, 438-444.	0.1	0
9	Fracture behavior and crack sensing capability of bonded carbon fiber composite joints with carbon nanotube-based polymer adhesive layer under Mode I loading. Composites Science and Technology, 2017, 146, 26-33.	3.8	65
10	Electronic and crystal structures of 1,2,3-triazole-fused p-benzoquinone derivatives. CrystEngComm, 2017, 19, 910-917.	1.3	10
11	Electromechanical response of polycarbonate-CNT/PZT laminates subjected to cyclic bending. International Journal of Materials and Product Technology, 2016, 52, 276.	0.1	2
12	Experimental Characterization of Crack Growth Behavior in Adhesive Interface under Impact Loading. Key Engineering Materials, 2016, 715, 116-121.	0.4	4
13	Deformation and failure of hybrid beams consisting of woven carbon fiber composite and shape memory polymer layers under flexural loading. Journal of Sandwich Structures and Materials, 2016, 18, 113-128.	2.0	7
14	CRYOMECHANICS AND CRACK BEHAVIOUR OF WOVEN POLYMER MATRIX COMPOSITES. Computational and Experimental Methods in Structures, 2015, , 159-178.	0.2	0
15	Cryogenic through-thickness tensile characterization of plain woven glass/epoxy composite laminates using cross specimens: Experimental test and finite element analysis. Composites Part B: Engineering, 2015, 78, 42-49.	5.9	16
16	Crystal-to-crystal structural transformation of hydrogen-bonding molecular crystals of (imidazolium)(3-hydroxy-2-quinoxalinecarboxylate) through H ₂ O adsorption–desorption. CrystEngComm, 2015, 17, 5962-5969.	1.3	11
17	Fatigue failure and electrical resistance behaviors of carbon nanotube-based polymer composites under uniaxial tension–tension loading in a cryogenic environment. Journal of Composite Materials, 2015, 49, 457-463.	1.2	9
18	Flexural stiffness variations of woven carbon fiber composite/shape memory polymer hybrid layered beams. Journal of Composite Materials, 2015, 49, 209-216.	1.2	12

Τομο Τακέδα

#	Article	IF	CITATIONS
19	Loading Rate-Dependent Fracture Properties and Electrical Resistance-Based Crack Growth Monitoring of Polycarbonate Reinforced with Carbon Nanotubes Under Tension. Journal of Testing and Evaluation, 2015, 43, 115-122.	0.4	4
20	Mixed-mode I/III fatigue delamination growth in woven glass/epoxy composite laminates at cryogenic temperatures. Journal of Composite Materials, 2014, 48, 1251-1259.	1.2	9
21	Short beam interlaminar shear behavior and electrical resistance-based damage self-sensing of woven carbon/epoxy composite laminates in a cryogenic environment. Journal of Composite Materials, 2014, 48, 119-128.	1.2	23
22	Electromechanical bending response of PZT/CNT-based polymer laminates subjected to concentrated load. International Journal of Mechanics and Materials in Design, 2014, 10, 193-197.	1.7	5
23	Flexural fatigue performance and electrical resistance response of carbon nanotube-based polymer composites at cryogenic temperatures. Cryogenics, 2014, 59, 44-48.	0.9	10
24	Interlaminar Shear and Electrical Resistance Responses of Woven-Carbon-Fiber-Reinforced-Polymer Composite Laminates at Cryogenic Temperatures From Cyclic Short Beam Shear Tests. Journal of Testing and Evaluation, 2014, 42, 573-580.	0.4	4
25	Numerical and experimental study on the response of multi-walled carbon nanotube/polymer composites under compressive loading. International Journal of Materials and Structural Integrity, 2013, 7, 4.	0.1	8
26	Cryogenic Interlaminar Fracture Properties of Woven Glass/Epoxy Composite Laminates Under Mixed-Mode I/III Loading Conditions. Applied Composite Materials, 2013, 20, 587-599.	1.3	7
27	Piezoelectric control of delamination response in woven fabric composites under mode I loading. Acta Mechanica, 2013, 224, 1315-1322.	1.1	8
28	Controllability of cryogenic Mode I delamination behavior in woven fabric composites using piezoelectric actuators. Engineering Fracture Mechanics, 2013, 102, 171-179.	2.0	11
29	Strength characterization of woven glass/epoxy composites under tensile fatigue loading at cryogenic temperatures using open hole specimens. Journal of Composite Materials, 2013, 47, 2885-2893.	1.2	3
30	Fatigue delamination growth in woven glass/epoxy composite laminates under mixed-mode II/III loading conditions at cryogenic temperatures. Cryogenics, 2013, 58, 55-61.	0.9	12
31	Cryogenic mechanical properties of woven glass/epoxy composites modified with multi-walled carbon nanotube and n-butyl glycidyl ether under tensile static and cyclic loadings. Cryogenics, 2013, 58, 33-37.	0.9	20
32	Interlaminar Delamination Fracture and Fatigue of Woven Glass Fiber Reinforced Polymer Composite Laminates at Cryogenic Temperatures. , 2013, , 115-125.		0
33	Crack and Electrical Resistance Behaviors of Carbon Nanotube-Based Polymer Composites under Mixed-Mode I/II Loading. Materials Transactions, 2013, 54, 1105-1109.	0.4	4
34	Multiscale Modeling and Characterization of Mechanical and Physical Properties for Carbon Nanotube-based Polymer Composites. Materia Japan, 2013, 52, 14-16.	0.1	0
35	Electrical resistance-based strain sensing in carbon nanotube/polymer composites under tension: Analytical modeling and experiments. Composites Science and Technology, 2012, 72, 1678-1682.	3.8	92
36	Mechanical response of nonwoven polyester fabric/epoxy composites at cryogenic temperatures. Cryogenics, 2012, 52, 564-568.	0.9	18

Τομο Τακέδα

#	Article	IF	CITATIONS
37	Three-dimensional stress analysis of cracked satin woven carbon fiber reinforced/polymer composites under tension at cryogenic temperatures. Cryogenics, 2012, 52, 784-792.	0.9	14
38	Interlaminar fracture characterization of woven glass/epoxy composites under mixed-mode II/III loading conditions at cryogenic temperatures. Engineering Fracture Mechanics, 2012, 96, 615-625.	2.0	28
39	Modeling and Characterization of Strain Sensing in CNT-Based Polymer Composites Under Tensile Loading. , 2012, , .		0
40	Electrical resistance change and crack behavior in carbon nanotube/polymer composites under tensile loading. Composites Part B: Engineering, 2012, 43, 39-43.	5.9	59
41	Numerical and experimental evaluation of cryogenic tensile strength of woven fabric-reinforced glass/epoxy composites using open hole specimens. Journal of Mechanics of Materials and Structures, 2011, 6, 545-556.	0.4	6
42	Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer, 2011, 52, 3852-3856.	1.8	193
43	Crack growth characteristics of carbon nanotube-based polymer composites subjected to cyclic loading. Engineering Fracture Mechanics, 2011, 78, 3102-3110.	2.0	17
44	Vacuum crack growth behavior of austenitic stainless steel under fatigue loading. Strength of Materials, 2011, 43, 532-536.	0.2	8
45	Cryogenic delamination growth in woven glass/epoxy composite laminates under mixed-mode I/II fatigue loading. Composites Science and Technology, 2011, 71, 647-652.	3.8	26
46	Electromechanical filed concentrations and polarization switching due to interdigitated electrodes in piezoelectric macro-fiber composites under tension. , 2011, , .		0
47	Nonlinear electromechanical fields and localized polarization switching of piezoelectric macrofiber composites. Journal of Mechanics of Materials and Structures, 2011, 6, 1089-1102.	0.4	13
48	Evaluation of Tensile Strength of Woven Carbon/Epoxy Composite Laminates at Cryogenic Temperatures Using the Open Hole Specimens. Journal of Testing and Evaluation, 2011, 39, 690-695.	0.4	2
49	Effect of damage on the interlaminar shear properties of hybrid composite laminates at cryogenic temperatures. Composite Structures, 2010, 93, 124-131.	3.1	25
50	Interlaminar shear properties of composite insulation systems for fusion magnets at cryogenic temperatures. Cryogenics, 2010, 50, 36-42.	0.9	19
51	Fracture behaviour of cracked carbon nanotubeâ€based polymer composites: Experiments and finite element simulations. Fatigue and Fracture of Engineering Materials and Structures, 2010, 33, 87-93.	1.7	22
52	BENDING RESPONSE OF CARBON NANOTUBE-BASED POLYMER COMPOSITES AT CRYOGENIC TEMPERATURES. , 2010, , .		0
53	Thermal-mechanical Analysis of Satin Weave CFRP Composites with Cracks at Cryogenic Temperatures. Journal of Reinforced Plastics and Composites, 2009, 28, 1319-1337.	1.6	7
54	Fatigue Crack Growth Behavior of Metastable Austenitic Stainless Steel in Cryogenic High Magnetic Field Environments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1863-1867.	1.1	2

Τομο Τακέδα

#	Article	IF	CITATIONS
55	Delamination growth mechanisms in woven glass fiber reinforced polymer composites under Mode II fatigue loading at cryogenic temperatures. Composites Science and Technology, 2009, 69, 1904-1911.	3.8	52
56	Analysis of mixed-mode interlaminar fracture and damage behavior of GFRP woven laminates at cryogenic temperatures. Cryogenics, 2009, 49, 80-83.	0.9	3
57	Cryogenic Behavior of Cracks in Satin Woven CFRP Laminates under Tensile Loading. Journal of Solid Mechanics and Materials Engineering, 2009, 3, 22-37.	0.5	1
58	Tensile Characterization of Carbon Nanotube-Reinforced Polymer Composites at Cryogenic Temperatures: Experimens and Multiscale Simulations. Materials Transactions, 2009, 50, 436-445.	0.4	35
59	Cryogenic mechanical response of multilayer satin weave CFRP composites with cracks. Mechanics of Composite Materials, 2008, 44, 331-340.	0.9	4
60	Mixed-mode interlaminar fracture and damage characterization in woven fabric-reinforced glass/epoxy composite laminates at cryogenic temperatures using the finite element and improved test methods. Engineering Fracture Mechanics, 2008, 75, 5101-5112.	2.0	21
61	THERMAL-MECHANICAL RESPONSE OF CRACKED SATIN WEAVE CFRP COMPOSITES AT CRYOGENIC TEMPERATURES. AIP Conference Proceedings, 2008, , .	0.3	1
62	Tensile Behavior and Damage/Acoustic Emission Characteristics of Woven Glass Fiber Reinforced/Epoxy Composite Laminates at Cryogenic Temperatures. AIP Conference Proceedings, 2006, ,	0.3	6
63	Deformation and progressive failure behavior of woven-fabric-reinforced glass/epoxy composite laminates under tensile loading at cryogenic temperatures. Composites Science and Technology, 2005, 65, 1691-1702.	3.8	54
64	Analysis of Mode I Interlaminar Fracture and Damage Behavior of GFRP Woven Laminates at Cryogenic Temperatures. Journal of Composite Materials, 2005, 39, 2053-2066.	1.2	16
65	FRACTURE MECHANICS ANALYSIS OF MULTI-LAYER PLAIN WEAVE FABRIC LAMINATES WITH TRANSVERSE CRACKS AT CRYOGENIC TEMPERATURES. International Journal of Computational Methods, 2004, 01, 151-169.	0.8	1
66	The Thermo-Mechanical Problem of Internal and Edge Cracks in Multi-Layered Woven GFRP Laminates at Cryogenic Temperatures. AIP Conference Proceedings, 2004, , .	0.3	1
67	Three-dimensional thermoelastic analysis of cracked plain weave glass/epoxy composites at cryogenic temperatures. Composites Science and Technology, 2004, 64, 2353-2362.	3.8	34
68	Stress Intensity Factors for Woven Glass/Epoxy Laminates with Cracks at Cryogenic Temperatures. Mechanics of Advanced Materials and Structures, 2004, 11, 109-132.	1.5	24
69	Tensile Deformation and Progressive Failure Behavior of Woven-Fabric GFRP Laminates at Cryogenic Temperatures. , 2004, , .		0
70	Mechanical Characterization of CFRP Woven Laminates between Room Temperature and 4K. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2003, 46, 359-364.	0.4	30
71	Thermoelastic analysis of cracked woven GFRP laminates at cryogenic temperatures. Cryogenics, 2002, 42, 451-462.	0.9	10
72	214 Mechanical Characterization of CFRP Woven Laminates Between Room Temperature and 4 K. The Proceedings of the JSME Materials and Processing Conference (M&P), 2002, 10.1, 445-450.	0.1	0

#	Article	IF	CITATIONS
73	Microfabrication and Characterization of Solid Surfaces Patterned with Enzymes or Antigen—Antibodies by Scanning Electrochemical Microscopy. ACS Symposium Series, 1997, , 202-209.	0.5	4
74	Damage Development in Hybrid Composite Laminates under Three-Point Bending at Cryogenic Temperatures. Key Engineering Materials, 0, 452-453, 565-568.	0.4	0