Chitoku Toda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9631896/publications.pdf

Version: 2024-02-01

25 papers 1,396 citations

430442 18 h-index 24 g-index

27 all docs

27 docs citations

times ranked

27

2501 citing authors

#	Article	IF	CITATIONS
1	Hypothalamic Orexin Stimulates Feeding-Associated Glucose Utilization in Skeletal Muscle via Sympathetic Nervous System. Cell Metabolism, 2009, 10, 466-480.	7.2	196
2	Uncoupling Protein 1 Is Necessary for Norepinephrine-Induced Glucose Utilization in Brown Adipose Tissue. Diabetes, 2005, 54, 1385-1391.	0.3	155
3	UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness. Cell, 2016, 164, 872-883.	13.5	136
4	POMC Neurons: From Birth to Death. Annual Review of Physiology, 2017, 79, 209-236.	5.6	117
5	Mitochondrial UCP2 in the central regulation of metabolism. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 757-764.	2.2	95
6	Distinct Effects of Leptin and a Melanocortin Receptor Agonist Injected Into Medial Hypothalamic Nuclei on Glucose Uptake in Peripheral Tissues. Diabetes, 2009, 58, 2757-2765.	0.3	94
7	Role of Central Leptin Signaling in the Starvation-Induced Alteration of B-Cell Development. Journal of Neuroscience, 2011, 31, 8373-8380.	1.7	58
8	Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle. Indian Journal of Endocrinology and Metabolism, 2012, 16, 562.	0.2	58
9	Beneficial effects of Brazilian propolis on type 2 diabetes in <i>ob/ob</i> mice. Adipocyte, 2013, 2, 227-236.	1.3	57
10	An enzymatic photometric assay for 2-deoxyglucose uptake in insulin-responsive tissues and 3T3-L1 adipocytes. Analytical Biochemistry, 2011, 412, 9-17.	1.1	50
11	Extracellular Signal–Regulated Kinase in the Ventromedial Hypothalamus Mediates Leptin-Induced Glucose Uptake in Red-Type Skeletal Muscle. Diabetes, 2013, 62, 2295-2307.	0.3	50
12	Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat. Cell Reports, 2018, 22, 706-721.	2.9	50
13	PPARÎ 3 ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding. Journal of Clinical Investigation, 2014, 124, 4017-4027.	3.9	50
14	Sympathetic Nerve Activity Maintains an Anti-Inflammatory State in Adipose Tissue in Male Mice by Inhibiting TNF-α Gene Expression in Macrophages. Endocrinology, 2015, 156, 3680-3694.	1.4	44
15	Ubiquitinâ€specific protease 2â€69 in macrophages potentially modulates metainflammation. FASEB Journal, 2013, 27, 4940-4953.	0.2	31
16	Induction of glucose uptake in skeletal muscle by central leptin is mediated by muscle \hat{l}^2 2-adrenergic receptor but not by AMPK. Scientific Reports, 2017, 7, 15141.	1.6	29
17	Hypothalamic prolyl endopeptidase (PREP) regulates pancreatic insulin and glucagon secretion in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11876-11881.	3.3	26
18	Uncoupling protein 1 contributes to fat-reducing effect of leptin. Obesity Research and Clinical Practice, 2007, $1,233-241$.	0.8	20

Снітоки Тода

#	Article	IF	CITATION
19	Hypothalamic Ventromedial Lin28a Enhances Glucose Metabolism in Diet-Induced Obesity. Diabetes, 2017, 66, 2102-2111.	0.3	16
20	Prostaglandin in the ventromedial hypothalamus regulates peripheral glucose metabolism. Nature Communications, 2021, 12, 2330.	5.8	15
21	Refeeding activates neurons in the dorsomedial hypothalamus to inhibit food intake and promote positive valence. Molecular Metabolism, 2021, 54, 101366.	3.0	15
22	Unsuppressed lipolysis in adipocytes is linked with enhanced gluconeogenesis and altered bile acid physiology in InsrP1195L/+ mice fed high-fat-diet. Scientific Reports, 2015, 5, 17565.	1.6	14
23	Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Biochemistry and Biophysics Reports, 2017, 9, 322-329.	0.7	12
24	Ubiquitin-Specific Protease 2 in the Ventromedial Hypothalamus Modifies Blood Glucose Levels by Controlling Sympathetic Nervous Activation. Journal of Neuroscience, 2022, 42, 4607-4618.	1.7	8
25	Editorial: Crosstalk Between the Metabolic and Cardiovascular Systems in the Brain. Frontiers in Physiology, 2021, 12, 834637.	1.3	O