Bipanko Kumar Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9630776/publications.pdf

Version: 2024-02-01

840119 940134 16 281 11 16 citations g-index h-index papers 16 16 16 93 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Computational investigation on the photovoltaic performance of an efficient GeSe-based dual-heterojunction thin film solar cell. Semiconductor Science and Technology, 2022, 37, 015008.	1.0	17
2	Simulation approach to reach the SQ limit in CIGS-based dual-heterojunction solar cell. Optik, 2022, 249, 168278.	1.4	18
3	Theoretical insights into a high-efficiency Sb2Se3-based dual-heterojunction solar cell. Heliyon, 2022, 8, e09120.	1.4	21
4	Design of a highly efficient FeS ₂ -based dual-heterojunction thin film solar cell. International Journal of Green Energy, 2022, 19, 1531-1542.	2.1	17
5	Theoretical insight into the enhancement of longer-wavelength light absorption in silicon solar cell with multilevel impurities. Results in Optics, 2022, 8, 100250.	0.9	5
6	Unraveling the nonlinear optical behaviors of indium selenide thin films prepared by spin coating method. Results in Physics, 2022, 39, 105701.	2.0	3
7	Stress-induced phase-alteration in solution processed indium selenide thin films during annealing. RSC Advances, 2021, 11, 13751-13762.	1.7	9
8	Effect of CdS and In3Se4 BSF layers on the photovoltaic performance of PEDOT:PSS/n-Si solar cells: Simulation based on experimental data. Superlattices and Microstructures, 2021, 152, 106853.	1.4	36
9	Design guidelines for a highly efficient high-purity germanium (HPGe)-based double-heterojunction solar cell. Optics and Laser Technology, 2021, 143, 107306.	2.2	30
10	Optimization of multilayer anti-reflection coatings for efficient light management of PEDOT:PSS/c-Si heterojunction solar cells. Materials Research Express, 2020, 7, 015502.	0.8	20
11	Synthesis of Self-Assembled Randomly Oriented VO ₂ Nanowires on a Glass Substrate by a Spin Coating Method. Inorganic Chemistry, 2020, 59, 15707-15716.	1.9	12
12	Newly synthesized A-site ordered cubic-perovskite superconductor (Ba0.54K0.46)4Bi4O12: A DFT investigation. Physica C: Superconductivity and Its Applications, 2020, 574, 1353669.	0.6	23
13	Guidelines for a highly efficient CuI/n-Si heterojunction solar cell. Engineering Research Express, 2020, 2, 045019.	0.8	17
14	Electronic Structure of In _{3–<i>x</i>} Se ₄ Electron Transport Layer for Chalcogenide/p-Si Heterojunction Solar Cells. ACS Omega, 2019, 4, 17762-17772.	1.6	23
15	Unraveling the electrical properties of solution-processed copper iodide thin films for CuI/n-Si solar cells. Materials Research Bulletin, 2019, 118, 110518.	2.7	22
16	Unveiling the electrical and thermoelectric properties of highly degenerate indium selenide thin films: indication of In3Se4 phase. Materials Research Express, 2019, 6, 126421.	0.8	8