Maxim Shusteff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9630715/publications.pdf

Version: 2024-02-01

623734 610901 2,987 30 14 24 citations g-index h-index papers 31 31 31 4231 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultralight, ultrastiff mechanical metamaterials. Science, 2014, 344, 1373-1377.	12.6	1,592
2	Volumetric additive manufacturing via tomographic reconstruction. Science, 2019, 363, 1075-1079.	12.6	584
3	Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14707-14712.	7.1	220
4	One-step volumetric additive manufacturing of complex polymer structures. Science Advances, 2017, 3, eaao5496.	10.3	219
5	Highly Tunable Thiolâ€Ene Photoresins for Volumetric Additive Manufacturing. Advanced Materials, 2020, 32, e2003376.	21.0	72
6	Performance Evaluation of Fast Microfluidic Thermal Lysis of Bacteria for Diagnostic Sample Preparation. Diagnostics, 2013, 3, 105-116.	2.6	40
7	Acoustic focusing with engineered node locations for high-performance microfluidic particle separation. Analyst, The, 2014, 139, 1192-1200.	3 . 5	34
8	Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles. Optics Express, 2018, 26, 13543.	3.4	26
9	Measuring Boltzmann's constant with a low-cost atomic force microscope: An undergraduate experiment. American Journal of Physics, 2006, 74, 873-879.	0.7	22
10	Holographic optical assembly and photopolymerized joining of planar microspheres. Optics Letters, 2016, 41, 3571.	3.3	18
11	Microreactor flow synthesis of the secondary high explosive 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105). Journal of Flow Chemistry, 2015, 5, 178-182.	1.9	17
12	Efficient coupling of acoustic modes in microfluidic channel devices. Lab on A Chip, 2015, 15, 3192-3202.	6.0	17
13	Object-space optimization of tomographic reconstructions for additive manufacturing. Additive Manufacturing, 2021, 48, 102367.	3.0	17
14	Latent image volumetric additive manufacturing. Optics Letters, 2022, 47, 1279.	3.3	17
15	On the Network Topology of Cross-Linked Acrylate Photopolymers: A Molecular Dynamics Case Study. Journal of Physical Chemistry B, 2020, 124, 9204-9215.	2.6	15
16	Computed axial lithography: volumetric 3D printing of arbitrary geometries (Conference) Tj ETQq0 0 0 rgBT /O	verlock 10	rf 50 142 Td (
17	Volumetric additive manufacturing of shape memory polymers. Polymer Chemistry, 2022, 13, 1813-1817.	3.9	12
18	Microfluidic-Based Amplification-Free Bacterial DNA Detection by Dielectrophoretic Concentration and Fluorescent Resonance Energy Transfer Assisted in Situ Hybridization (FRET-ISH). Biosensors, 2012, 2, 405-416.	4.7	11

#	Article	IF	Citations
19	Modeling meso- and microstructure in materials patterned with acoustic focusing. Materials and Design, 2021, 202, 109512.	7.0	8
20	A Microfluidic Platform for Precision Small-volume Sample Processing and Its Use to Size Separate Biological Particles with an Acoustic Microdevice. Journal of Visualized Experiments, 2015, , .	0.3	6
21	Performance of three-dimensional printed nasopharyngeal swabs for COVID-19 testing. MRS Bulletin, 2021, 46, 813-821.	3.5	6
22	Anisotropic Thermally Conductive Composites Enabled by Acoustophoresis and Stereolithography. Advanced Functional Materials, 2022, 32, .	14.9	6
23	Spatial tuning of acoustofluidic pressure nodes by altering net sonic velocity enables high-throughput, efficient cell sorting. Lab on A Chip, 2015, 15, 1000-1003.	6.0	5
24	Experimental characterization and modeling of optical tweezer particle handling dynamics. Applied Optics, 2018, 57, 6565.	1.8	4
25	Novel, rapid DNA-based on-chip bacterial identification system combining dielectrophoresis and amplification-free fluorescent resonance energy transfer assisted in-situ hybridization (FRET-ISH)., 2011,,.		3
26	Lightweight micro lattices with nanoscale features fabricated from Projection Microstereolithography. , 2014, , .		1
27	Planar Microparticle Assembly and Photopolymerized Joining with Holographic Optical Tweezers. , 2016, , .		O
28	Optimal Source Beam Shaping for Digital Holographic Lithography. , 2016, , .		0
29	Fluorescence correlation spectroscopy measurements of proteins expressed inside microcapsules. Biophysical Journal, 2022, 121, 413a-414a.	0.5	0
30	Computational optimization and the role of optical metrology in tomographic additive manufacturing. , 2022, , .		0