Darrel W Stafford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9630669/publications.pdf Version: 2024-02-01

DADDEL W STAFFORD

#	Article	IF	CITATIONS
1	Naturally occurring UBIAD1 mutations differentially affect menaquinone biosynthesis and vitamin Kâ€dependent carboxylation. FEBS Journal, 2022, 289, 2613-2627.	4.7	3
2	International consensus recommendations on the management of people with haemophilia B. Therapeutic Advances in Hematology, 2022, 13, 204062072210852.	2.5	13
3	γ-Glutamyl carboxylase mutations differentially affect the biological function of vitamin K–dependent proteins. Blood, 2021, 137, 533-543.	1.4	19
4	A novel vitamin K derived anticoagulant tolerant to genetic variations of vitamin K epoxide reductase. Journal of Thrombosis and Haemostasis, 2021, 19, 689-700.	3.8	9
5	The Function of extravascular coagulation factor IX in haemostasis. Haemophilia, 2021, 27, 332-339.	2.1	22
6	Vitamin K-dependent carboxylation of coagulation factors: insights from a cell-based functional study. Haematologica, 2020, 105, 2164-2173.	3.5	11
7	A cell-based high-throughput screen identifies drugs that cause bleeding disorders by off-targeting the vitamin K cycle. Blood, 2020, 136, 898-908.	1.4	8
8	Dysfunctional endogenous FIX impairs prophylaxis in a mouse hemophilia B model. Blood, 2019, 133, 2445-2451.	1.4	13
9	Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition. Blood, 2018, 132, 647-657.	1.4	32
10	Evaluation of oral anticoagulants with vitamin K epoxide reductase in its native milieu. Blood, 2018, 132, 1974-1984.	1.4	24
11	Molecular basis of the first reported clinical case of congenital combined deficiency of coagulation factors. Blood, 2017, 130, 948-951.	1.4	7
12	Vitamin K epoxide reductase and its paralogous enzyme have different structures and functions. Scientific Reports, 2017, 7, 17632.	3.3	6
13	Extravascular FIX and coagulation. Thrombosis Journal, 2016, 14, 35.	2.1	28
14	Prophylactic efficacy of BeneFIX vs Alprolix in hemophilia B mice. Blood, 2016, 128, 286-292.	1.4	44
15	Splice-Site Mutation of Exon 3 Deletion in the Gamma-Glutamyl Carboxylase Gene Causes Inactivation of the Enzyme. Journal of Investigative Dermatology, 2016, 136, 2314-2317.	0.7	5
16	Characterization of vitamin K–dependent carboxylase mutations that cause bleeding and nonbleeding disorders. Blood, 2016, 127, 1847-1855.	1.4	43
17	Creation of a mouse expressing defective human factor IX. Blood, 2004, 104, 1733-1739.	1.4	45
18	Amino Acids Responsible for Reduced Affinities of Vitamin K-Dependent Propeptides for the Carboxylaseâ€. Biochemistry, 1999, 38, 15681-15687.	2.5	27

DARREL W STAFFORD

#	Article	IF	CITATIONS
19	Human Factor IX Corrects the Bleeding Diathesis of Mice With Hemophilia B. Blood, 1998, 91, 784-790.	1.4	119
20	A Missense Mutation in Î ³ -Glutamyl Carboxylase Gene Causes Combined Deficiency of All Vitamin K-Dependent Blood Coagulation Factors. Blood, 1998, 92, 4554-4559.	1.4	136
21	Human Factor IX Binds to Specific Sites on the Collagenous Domain of Collagen IV. Journal of Biological Chemistry, 1997, 272, 16717-16720.	3.4	58
22	Genomic Sequence and Transcription Start Site for the Human Î ³ -Glutamyl Carboxylase. Blood, 1997, 89, 4058-4062.	1.4	51
23	A Coagulation Factor IX-Deficient Mouse Model for Human Hemophilia B. Blood, 1997, 90, 3962-3966.	1.4	276
24	Characterization of the Ï'-Glutamyl Carboxylase. Thrombosis and Haemostasis, 1997, 78, 599-604.	3.4	22
25	The endothelial cell binding determinant of human factor IX resides in the .gammacarboxyglutamic acid domain. Biochemistry, 1992, 31, 1806-1808.	2.5	38
26	Epitope Localization of Anti-Factor VIII Monoclonal Antibodies Determined by Recombinant peptides. Thrombosis and Haemostasis, 1989, 61, 225-229.	3.4	8