
Duncan S Callaway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9628676/publications.pdf Version: 2024-02-01

DUNCAN S CALLANDAY

#	Article	IF	CITATIONS
1	MPC-Based Fast Frequency Control of Voltage Source Converters in Low-Inertia Power Systems. IEEE Transactions on Power Systems, 2022, 37, 3209-3220.	4.6	31
2	A Multi-Stage Stochastic Risk Assessment With Markovian Representation of Renewable Power. IEEE Transactions on Sustainable Energy, 2022, 13, 414-426.	5.9	6
3	Pricing and Energy Trading in Peer-to-Peer Zero Marginal-Cost Microgrids. IEEE Transactions on Smart Grid, 2022, 13, 702-714.	6.2	7
4	Continuous-time echo state networks for predicting power system dynamics. Electric Power Systems Research, 2022, 212, 108562.	2.1	5
5	Least-cost targets and avoided fossil fuel capacity in India's pursuit of renewable energy. Proceedings of the United States of America, 2021, 118, .	3.3	24
6	Transient Simulations With a Large Penetration of Converter-Interfaced Generation: Scientific Computing Challenges And Opportunities. IEEE Electrification Magazine, 2021, 9, 72-82.	1.8	11
7	PowerSystems.jl — A power system data management package for large scale modeling. SoftwareX, 2021, 15, 100747.	1.2	16
8	Understanding Small-Signal Stability of Low-Inertia Systems. IEEE Transactions on Power Systems, 2021, 36, 3997-4017.	4.6	133
9	Inequitable access to distributed energy resources due to grid infrastructure limits in California. Nature Energy, 2021, 6, 892-903.	19.8	53
10	Online Convex Optimization With Binary Constraints. IEEE Transactions on Automatic Control, 2021, 66, 6164-6170.	3.6	4
11	Wasserstein Distributionally Robust Look-Ahead Economic Dispatch. IEEE Transactions on Power Systems, 2021, 36, 2010-2022.	4.6	36
12	Optimal electricity tariff design with demand-side investments. Energy Systems, 2020, 11, 551-579.	1.8	4
13	Toward Distributed Energy Services: Decentralizing Optimal Power Flow With Machine Learning. IEEE Transactions on Smart Grid, 2020, 11, 1296-1306.	6.2	53
14	Linear Single- and Three-Phase Voltage Forecasting and Bayesian State Estimation With Limited Sensing. IEEE Transactions on Power Systems, 2020, 35, 1674-1683.	4.6	20
15	A Critical Exploration of the Efficiency Impacts of Demand Response From HVAC in Commercial Buildings. Proceedings of the IEEE, 2020, 108, 1623-1639.	16.4	9
16	Computational experiment design for operations model simulation. Electric Power Systems Research, 2020, 189, 106680.	2.1	7
17	Enhanced MPC for Fast Frequency Control in Inverter-Dominated Power Systems. , 2020, , .		7
18	Grid Forming Inverter Small Signal Stability: Examining Role of Line and Voltage Dynamics. , 2020, , .		7

2

DUNCAN S CALLAWAY

#	Article	IF	CITATIONS
19	Dynamic and Distributed Online Convex Optimization for Demand Response of Commercial Buildings. , 2020, 4, 632-637.		17
20	Review and Perspectives on Data Sharing and Privacy in Expanding Electricity Access. Proceedings of the IEEE, 2019, 107, 1803-1819.	16.4	9
21	Decarbonizing Space and Water Heating in Temperate Climates: The Case for Electrification. Atmosphere, 2019, 10, 435.	1.0	18
22	Distributed Resources Shift Paradigms on Power System Design, Planning, and Operation: An Application of the GAP Model. Proceedings of the IEEE, 2019, 107, 1906-1922.	16.4	15
23	Power quality and modern energy for all. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16308-16313.	3.3	22
24	Frequency Regulation using Data-Driven Controllers in Power Grids with Variable Inertia due to Renewable Energy. , 2019, , .		7
25	Data-driven Control Design Schemes in Active Distribution Grids: Capabilities and Challenges. , 2019, , .		12
26	Optimal Sizing and Tuning of Storage Capacity for Fast Frequency Control in Low-Inertia Systems. , 2019, , .		7
27	Experimental Demonstration of Frequency Regulation by Commercial Buildings—Part II: Results and Performance Evaluation. IEEE Transactions on Smart Grid, 2018, 9, 3224-3234.	6.2	53
28	Real-Time Charging Strategies for an Electric Vehicle Aggregator to Provide Ancillary Services. IEEE Transactions on Smart Grid, 2018, 9, 5141-5151.	6.2	104
29	Generation Expansion Analysis in Low Data Settings. , 2018, , .		0
30	Price and capacity competition in balancing markets with energy storage. Energy Systems, 2017, 8, 169-197.	1.8	14
31	Strategic siting and regional grid interconnections key to low-carbon futures in African countries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3004-E3012.	3.3	48
32	Griddle: Video Gaming for Power System Education. IEEE Transactions on Power Systems, 2017, 32, 3069-3077.	4.6	11
33	Variance-Constrained Risk Sharing in Stochastic Systems. IEEE Transactions on Automatic Control, 2017, 62, 1865-1879.	3.6	2
34	Optimal dispatch of reactive power for voltage regulation and balancing in unbalanced distribution systems. , 2016, , .		37
35	Model-Free Optimal Control of VAR Resources in Distribution Systems: An Extremum Seeking Approach. IEEE Transactions on Power Systems, 2016, 31, 3583-3593.	4.6	72
36	Power systems without fuel. Renewable and Sustainable Energy Reviews, 2016, 57, 1322-1336.	8.2	78

DUNCAN S CALLAWAY

#	Article	IF	CITATIONS
37	Indirect load control for electricity market risk management via risk-limiting dynamic contracts. , 2015, , .		10
38	Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach. IEEE Transactions on Power Systems, 2015, 30, 2965-2973.	4.6	54
39	Arbitraging Intraday Wholesale Energy Market Prices With Aggregations of Thermostatic Loads. IEEE Transactions on Power Systems, 2015, 30, 763-772.	4.6	179
40	Direct load control for electricity market risk management via risk-limiting dynamic contracts. , 2014, , ,		3
41	The Impact of State of Charge Management When Providing Regulation Power With Energy Storage. IEEE Transactions on Power Systems, 2014, 29, 1433-1434.	4.6	17
42	Consolidated Dynamic Pricing of Power System Regulation. IEEE Transactions on Power Systems, 2013, 28, 4692-4700.	4.6	16
43	Modeling the effect of geographically diverse pv generation on California's distribution system. , 2013, , \cdot		4
44	State Estimation and Control of Electric Loads to Manage Real-Time Energy Imbalance. IEEE Transactions on Power Systems, 2013, 28, 430-440.	4.6	472
45	Decentralized Charging Control of Large Populations of Plug-in Electric Vehicles. IEEE Transactions on Control Systems Technology, 2013, 21, 67-78.	3.2	742
46	Competitive energy storage in the presence of renewables. IEEE Transactions on Power Systems, 2013, 28, 985-996.	4.6	40
47	Parameterizing fluctuations in solar photovoltaic generation using Hidden Markov Models. , 2013, , .		2
48	Dynamic pricing in consolidated ancillary service markets. , 2013, , .		1
49	Inventory control of storage in distribution systems. , 2012, , .		4
50	State Estimation and Control of Heterogeneous Thermostatically Controlled Loads for Load Following. , 2012, , .		83
51	Achieving Controllability of Electric Loads. Proceedings of the IEEE, 2011, 99, 184-199.	16.4	862
52	Can smaller loads be profitably engaged in power system services?. , 2011, , .		21
53	Decentralized charging control for large populations of plug-in electric vehicles: Application of the Nash certainty equivalence principle. , 2010, , .		116
54	Estimating the probability of load curtailment in power systems with responsive distributed storage. , 2010, , .		6

DUNCAN S CALLAWAY

#	Article	IF	CITATIONS
55	Controlling distributed energy constrained resources for power system ancillary services. , 2010, , .		12
56	Sequential Reliability Forecasting for Wind Energy: Temperature Dependence and Probability Distributions. IEEE Transactions on Energy Conversion, 2010, 25, 577-585.	3.7	88
57	Decentralized charging control for large populations of plug-in electric vehicles. , 2010, , .		154
58	Achieving controllability of plug-in electric vehicles. , 2009, , .		18
59	Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy. Energy Conversion and Management, 2009, 50, 1389-1400.	4.4	618