
Robert J Matusik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9627437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA-21 deficiency suppresses prostate cancer progression through downregulation of the IRS1-SREBP-1 signaling pathway. Cancer Letters, 2022, 525, 46-54.	3.2	19
2	Fetuin-A Promotes 3-Dimensional Growth in LNCaP Prostate Cancer Cells by Sequestering Extracellular Vesicles to Their Surfaces to Act as Signaling Platforms. International Journal of Molecular Sciences, 2022, 23, 4031.	1.8	5
3	Glucocorticoids are induced while dihydrotestosterone levels are suppressed in 5â€alpha reductase inhibitor treated human benign prostate hyperplasia patients. Prostate, 2022, 82, 1378-1388.	1.2	7
4	Identification of Genes Required for Enzalutamide Resistance in Castration-Resistant Prostate Cancer Cells <i>In Vitro</i> . Molecular Cancer Therapeutics, 2021, 20, 398-409.	1.9	17
5	The prostaglandin pathway is activated in patients who fail medical therapy for benign prostatic hyperplasia with lower urinary tract symptoms. Prostate, 2021, 81, 944-955.	1.2	5
6	KDM5B Is Essential for the Hyperactivation of PI3K/AKT Signaling in Prostate Tumorigenesis. Cancer Research, 2020, 80, 4633-4643.	0.4	32
7	Prostatic osteopontin expression is associated with symptomatic benign prostatic hyperplasia. Prostate, 2020, 80, 731-741.	1.2	19
8	Role of Androgen Receptor Variants in Prostate Cancer: Report from the 2017 Mission Androgen Receptor Variants Meeting. European Urology, 2018, 73, 715-723.	0.9	105
9	Therapy-induced small-cell disease: from mouse to man and back. Nature Reviews Urology, 2018, 15, 662-663.	1.9	3
10	Bone Metastasis of Prostate Cancer Can Be Therapeutically Targeted at the TBX2–WNT Signaling Axis. Cancer Research, 2017, 77, 1331-1344.	0.4	50
11	NFâ€îºB and androgen receptor variant expression correlate with human BPH progression. Prostate, 2016, 76, 491-511.	1.2	49
12	NFâ€ÎºB and androgen receptor variant 7 induce expression of SRD5A isoforms and confer 5ARI resistance. Prostate, 2016, 76, 1004-1018.	1.2	22
13	Nfib Regulates Transcriptional Networks That Control the Development of Prostatic Hyperplasia. Endocrinology, 2016, 157, 1094-1109.	1.4	27
14	Activation of GRP/GRP-R signaling contributes to castration-resistant prostate cancer progression. Oncotarget, 2016, 7, 61955-61969.	0.8	18
15	Loss of FOXA1 Drives Sexually Dimorphic Changes in Urothelial Differentiation and Is an Independent Predictor of Poor Prognosis in Bladder Cancer. American Journal of Pathology, 2015, 185, 1385-1395.	1.9	60
16	Tailoring Peptidomimetics for Targeting Protein–Protein Interactions. Molecular Cancer Research, 2014, 12, 967-978.	1.5	41
17	NF-κB Gene Signature Predicts Prostate Cancer Progression. Cancer Research, 2014, 74, 2763-2772.	0.4	99
18	F 2 -Isoprostanes as a Biomarker of Oxidative Stress in the Mouse Bladder. Journal of Urology, 2014, 191, 1597-1601.	0.2	13

2

ROBERT J MATUSIK

#	Article	IF	CITATIONS
19	FOXA1 deletion in luminal epithelium causes prostatic hyperplasia and alteration of differentiated phenotype. Laboratory Investigation, 2014, 94, 726-739.	1.7	39
20	Mouse models of prostate cancer: picking the best model for the question. Cancer and Metastasis Reviews, 2014, 33, 377-397.	2.7	100
21	Neuroendocrine differentiation in the 12Tâ€∎0 transgenic prostate mouse model mimics endocrine differentiation of pancreatic beta cells. Prostate, 2008, 68, 50-60.	1.2	33
22	Prostate epithelial cell fate. Differentiation, 2008, 76, 682-698.	1.0	37
23	NE-10 Neuroendocrine Cancer Promotes the LNCaP Xenograft Growth in Castrated Mice. Cancer Research, 2004, 64, 5489-5495.	0.4	105
24	Transgenic Mouse Models of Prostate Carcinoma: Anatomic, Histopathologic, and Molecular Considerations. , 2003, , 245-319.		7
25	Differential transactivation by the androgen receptor in prostate cancer cells. , 1998, 36, 256-263.		36